48 resultados para progetto PCB nodo sensore wireless ultra low power monitoraggio della temperatura


Relevância:

40.00% 40.00%

Publicador:

Resumo:

External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requires heat to be transferred to the working fluid as it expands. This paper reviews various low-temperature vapour power cycle heat engines with quasi-isothermal expansion, including the methods employed to realize the heat transfer. The heat engines take the form of the Rankine cycle with continuous heat addition during the expansion process, or the Stirling cycle with a condensable vapour as working fluid. Compared to more standard Stirling engines using gas, the specific work output is higher. Cryogenic heat engines based on the Rankine cycle have also been enhanced with quasi-isothermal expansion. Liquid flooded expansion and expander surface heating are the two main heat transfer methods employed. Liquid flooded expansion has been applied mainly in rotary expanders, including scroll turbines; whereas surface heating has been applied mainly in reciprocating expanders. © 2014 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For wireless power transfer (WPT) systems, communication between the primary side and the pickup side is a challenge because of the large air gap and magnetic interferences. A novel method, which integrates bidirectional data communication into a high-power WPT system, is proposed in this paper. The power and data transfer share the same inductive link between coreless coils. Power/data frequency division multiplexing technique is applied, and the power and data are transmitted by employing different frequency carriers and controlled independently. The circuit model of the multiband system is provided to analyze the transmission gain of the communication channel, as well as the power delivery performance. The crosstalk interference between two carriers is discussed. In addition, the signal-to-noise ratios of the channels are also estimated, which gives a guideline for the design of mod/demod circuits. Finally, a 500-W WPT prototype has been built to demonstrate the effectiveness of the proposed WPT system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For micro gas turbines (MGT) of around 1 kW or less, a commercially suitable recuperator must be used to produce a thermal efficiency suitable for use in UK Domestic Combined Heat and Power (DCHP). This paper uses computational fluid dynamics (CFD) to investigate a recuperator design based on a helically coiled pipe-in-pipe heat exchanger which utilises industry standard stock materials and manufacturing techniques. A suitable mesh strategy was established by geometrically modelling separate boundary layer volumes to satisfy y + near wall conditions. A higher mesh density was then used to resolve the core flow. A coiled pipe-in-pipe recuperator solution for a 1 kW MGT DCHP unit was established within the volume envelope suitable for a domestic wall-hung boiler. Using a low MGT pressure ratio (necessitated by using a turbocharger oil cooled journal bearing platform) meant unit size was larger than anticipated. Raising MGT pressure ratio from 2.15 to 2.5 could significantly reduce recuperator volume. Dimensional reasoning confirmed the existence of optimum pipe diameter combinations for minimum pressure drop. Maximum heat exchanger effectiveness was achieved using an optimum or minimum pressure drop pipe combination with large pipe length as opposed to a large pressure drop pipe combination with shorter pipe length. © 2011 Elsevier Ltd. All rights reserved.