71 resultados para orbital cortex
Resumo:
Several brain regions, including the primary and secondary somatosensory cortices (SI and SII, respectively), are functionally active during the pain experience. Both of these regions are thought to be involved in the sensory-discriminative processing of pain and recent evidence suggests that SI in particular may also be involved in more affective processing. In this study we used MEG to investigate the hypothesis that frequency-specific oscillatory activity may be differentially associated with the sensory and affective components of pain. In eight healthy participants (four male), MEG was recorded during a visceral pain experiment comprising baseline, anticipation, pain and post-pain phases. Pain was delivered via intraluminal oesophageal balloon distension (four stimuli at 1 Hz). Significant bilateral but asymmetrical changes in neural activity occurred in the beta-band within SI and SII. In SI, a continuous increase in neural activity occurred during the anticipation phase (20-30 Hz), which continued during the pain phase but at a lower frequency (10-15 Hz). In SII, oscillatory changes only occurred during the pain phase, predominantly in the 20-30 Hz beta band, and were coincident with the stimulus. These data provide novel evidence of functional diversity within SI, indicating a role in attentional and sensory aspects of pain processing. In SII, oscillatory changes were predominantly stimulus-related, indicating a role in encoding the characteristics of the stimulus. We therefore provide objective evidence of functional heterogeneity within SI and functional segregation between SI and SII, and suggest that the temporal and frequency dynamics within cortical regions may offer valuable insights into pain processing.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.
Resumo:
Type 1 cannabinoid receptors (CB1R) have a well established role in modulating GABAergic signalling with the central nervous system, and are thought to be the only type present at GABAergic presynaptic terminals. In the medial entorhinal cortex (mEC), some cortical layers show high levels of ongoing GABAergic signalling (namely layer II) while others show relatively low levels (layer V). Using whole-cell patch clamp techniques, I have, for the first time, demonstrated the presence of functional CB1R in both deep and superficial layers of the mEC. Furthermore, using a range of highly specific ligands for both CB1R and CB2R, I present strong pharmacological evidence for CB2Rs being present in both deep and superficial layers of the mEC in the adult rat brain. In brain slices taken at earlier points in CNS development (P8-12), I have shown that while both CB1R and CB2R specific ligands do modulate GABAergic signalling at early developmental stages, antagonists/ inverse agonists and full agonists have similar effects, and serve only to reduce GABAergic signalling. These data suggest that the full cannabinoid signalling mechanisms at this early stage in synaptogenesis are not yet in place. During these whole-cell studies, I have developed and refined a novel recording technique, using an amantidine derivative (IEM1460) which allows inhibitory postsynaptic currents to be recorded under conditions in which glutamate receptors are not blocked and network activity remains high. Finally I have shown that bath applied CB1 and CB2 receptor antagonists/ inverse agonists are capable of modulating kainic acid induced persistent oscillatory activity in mEC. Inverse agonists suppressed oscillatory activity in the superficial layers of the mEC while it was enhanced in the deeper layers. It seems likely that cannabinoid receptors modulate the inhibitory neuronal activity that underlies network oscillations.
Resumo:
In this study I investigated the mechanisms of neuronal network oscillatory activity in rat M1 using pharmacological manipulations and electrical stimulation protocols, employing the in vitro brain slice technique in rat and magnetoencephalography (MEG) in man. Co-application of kainic acid and carbachol generated in vitro beta oscillatory activity in all layers in M1. Analyses indicated that oscillations originated from deep layers and indicated significant involvement of GABAA receptors and gap junctions. A modulatory role of GABAB, NMDA, and dopamine receptors was also evident. Intracellular recordings from fast-spiking (FS) GABAergic inhibitory cells revealed phase-locked action potentials (APs) on every beta cycle. Glutamatergic excitatory regular-spiking (RS) and intrinsically-bursting (IB) cells both received phase locked inhibitory postsynaptic potentials, but did not fire APs on every cycle, suggesting the dynamic involvement of different pools of neurones in the overall population oscillations. Stimulation evoked activity at high frequency (HFS; 125Hz) evoked gamma oscillations and reduced ongoing beta activity. 20Hz stimulation promoted theta or gamma oscillations whilst 4Hz stimulation enhanced beta power at theta frequency. I also investigated the modulation of pathological slow wave (theta and beta) oscillatory activity using magnetoencephalography. Abnormal activity was suppressed by sub-sedative doses of GABAA receptor modulator zolpidem and the observed desynchronising effect correlated well with improved sensorimotor function. These studies indicate a fundamental role for inhibitory neuronal networks in the patterning beta activity and suggest that cortical HFS in PD re-patterns abnormally enhanced M1 network activity by modulating the activity of FS cells. Furthermore, pathological oscillation may be common to many neuropathologies and may be an important future therapeutic target.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.
Resumo:
Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500?nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.
Resumo:
Ethosuximide is the drug of choice for treating generalized absence seizures, but its mechanism of action is still a matter of debate. It has long been thought to act by disrupting a thalamic focus via blockade of T-type channels and, thus, generation of spike-wave activity in thalamocortical pathways. However, there is now good evidence that generalized absence seizures may be initiated at a cortical focus and that ethosuximide may target this focus. In the present study we have looked at the effect ethosuximide on glutamate and GABA release at synapses in the rat entorhinal cortex in vitro, using two experimental approaches. Whole-cell patch-clamp studies revealed an increase in spontaneous GABA release by ethosuximide concurrent with no change in glutamate release. This was reflected in studies that estimated global background inhibition and excitation from intracellularly recorded membrane potential fluctuations, where there was a substantial rise in the ratio of network inhibition to excitation, and a concurrent decrease in excitability of neurones embedded in this network. These studies suggest that, in addition to well-characterised effects on ion channels, ethosuximide may directly elevate synaptic inhibition in the cortex and that this could contribute to its anti-absence effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Resumo:
The pattern of senile plaques was investigated in various brain regions of six SDAT brains. In 91 pattern analyses, the regularly spaced clump was the most common pattern found in 64.8% of analyses. Clumping due to large aggregations of uncored plaques in sulci was also common. Regularly spaced clumps were equally common in the hippocampus and neocortex. The pattern of plaques varied in different tissue sections from the same brain region. Cored and uncored plaques presented a similar range of patterns but their pattern varied when they were both present in the same tissue section. Both clump diameter and the intensity of clumping were positively correlated with cored but unrelated to uncored plaque density. Plaques may develop in regular clumps on subcortical afferents and during development of the disease the clumps may spread laterally and ultimately coalesce.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibithumanmotor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15-35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson's disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. © 2013 the authors.
Resumo:
NMDA receptors (NMDAr) are known to undergo recycling and lateral diffusion in postsynaptic spines and dendrites. However, NMDAr are also present as autoreceptors on glutamate terminals, where they act to facilitate glutamate release, but it is not known whether these receptors are also mobile. We have used functional pharmacological approaches to examine whether NMDA receptors at excitatory synapses in the rat entorhinal cortex are mobile at either postsynaptic sites or in presynaptic terminals. When NMDAr-mediated evoked EPSCs (eEPSCs) were blocked by MK-801, they showed no evidence of recovery when the irreversible blocker was removed, suggesting that postsynaptic NMDAr were relatively stably anchored at these synapses. However, using frequency-dependent facilitation of AMPA receptor (AMPAr)-mediated eEPSCs as a reporter of presynaptic NMDAr activity, we found that when facilitation was blocked with MK-801 there was a rapid (similar to 30-40 min) anomalous recovery upon removal of the antagonist. This was not observed when global NMDAr blockade was induced by combined perfusion with MK-801 and NMDA. Anomalous recovery was accompanied by an increase in frequency of spontaneous EPSCs, and a variable increase in frequency-facilitation. Following recovery from blockade of presynaptic NMDAr with a competitive antagonist, frequency-dependent facilitation of AMPAr-mediated eEPSCs was also transiently enhanced. Finally, an increase in frequency of miniature EPSCs induced by NMDA was succeeded by a persistent decrease. Our data provide the first evidence for mobility of NMDAr in the presynaptic terminals, and may point to a role of this process in activity-dependent control of glutamate release.
Resumo:
Volume reduction and functional impairment in areas of the prefrontal cortex (PFC) have been found in borderline personality disorder (BPD), particularly in patients with a history of childhood abuse. These abnormalities may contribute to the expression of emotion dysregulation and aggressiveness. In this study we investigated whether the volume of the PFC is reduced in BPD patients and whether a history of childhood abuse would be associated with greater PFC structural changes. Structural MRI data were obtained from 18 BPD patients and 19 healthy individuals matched for age, sex, handedness, and education and were analyzed using voxel based morphometry. The Child Abuse Scale was used to elicit a past history of abuse; aggression was evaluated using the Buss-Durkee Hostility Inventory (BDHI). The volume of the right ventrolateral PFC (VLPFC) was significantly reduced in BPD subjects with a history of childhood abuse compared to those without this risk factor. Additionally, right VLPFC gray matter volume significantly correlated with the BDHI total score and with BDHI irritability and negativism subscale scores in patients with a history of childhood abuse. Our results suggest that a history of childhood abuse may lead to increased aggression mediated by an impairment of the right VLPFC. © 2013 Elsevier Ireland Ltd.
Resumo:
Gamma oscillations have previously been linked to pain perception and it has been hypothesised that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. In this study, Magnetoencephalography (MEG) was used to investigate the changes in cortical oscillations during 4 different intensities of a train of electrical stimuli to the right index finger, ranging from low sensation to strong pain. In those participants showing changes in evoked oscillatory gamma in SI during stimulation, the strength of the gamma power was found to increase with increasing stimulus intensity at both pain and sub-pain thresholds. These results suggest that evoked gamma oscillations in SI are not specific to pain but may have a role in encoding somatosensory stimulus intensity. © 2013 Rossiter, Worthen, Witton, Hall and Furlong.