104 resultados para optimisation of sheet metal manufacturing process
Resumo:
In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.
Resumo:
The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Background: Currently, no review has been completed regarding the information-gathering process for the provision of medicines for self-medication in community pharmacies in developing countries. Objective: To review the rate of information gathering and the types of information gathered when patients present for self-medication requests. Methods: Six databases were searched for studies that described the rate of information gathering and/or the types of information gathered in the provision of medicines for self-medication in community pharmacies in developing countries. The types of information reported were classified as: signs and symptoms, patient identity, action taken, medications, medical history, and others. Results: Twenty-two studies met the inclusion criteria. Variations in the study populations, types of scenarios, research methods, and data reporting were observed. The reported rate of information gathering varied from 18% to 97%, depending on the research methods used. Information on signs and symptoms and patient identity was more frequently reported to be gathered compared with information on action taken, medications, and medical history. Conclusion: Evidence showed that the information-gathering process for the provision of medicines for self-medication via community pharmacies in developing countries is inconsistent. There is a need to determine the barriers to appropriate information-gathering practice as well as to develop strategies to implement effective information-gathering processes. It is also recommended that international and national pharmacy organizations, including pharmacy academics and pharmacy researchers, develop a consensus on the types of information that should be reported in the original studies. This will facilitate comparison across studies so that areas that need improvement can be identified. © 2013 Elsevier Inc.
Resumo:
Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.
Resumo:
With the fast changing global business landscape, manufacturing companies are facing increasing challenge to reduce cost of production, increase equipment utilization and provide innovative products in order to compete with countries with low labour cost and production cost. On of the methods is zero down time. Unfortunately, the current research and industrial solution does not provide user friendly development environment to create “Adaptive microprocessor size with supercomputer performance” solution to reduce downtime. Most of the solutions are PC based computer with off the shelf research software tools which is inadequate for the space constraint manufacturing environment in developed countries. On the other hand, to develop solution for various manufacturing domain will take too much time, there is lacking tools available for rapid or adaptive way of create the solution. Therefore, this research is to understand the needs, trends, gaps of manufacturing prognostics and defines the research potential related to rapid embedded system framework for prognostic.
Resumo:
It is generally believed that the structural reforms that were introduced in India following the macro-economic crisis of 1991 ushered in competition and forced companies to become more efficient. However, whether the post-1991 growth is an outcome of more efficient use of resources or greater use of factor inputs remains an open empirical question. In this paper, we use plant-level data from 1989–1990 and 2000–2001 to address this question. Our results indicate that while there was an increase in the productivity of factor inputs during the 1990s, most of the growth in value added is explained by growth in the use of factor inputs. We also find that median technical efficiency declined in all but one of the industries between 1989–1990 and 2000–2001, and that change in technical efficiency explains a very small proportion of the change in gross value added.
Resumo:
Premium intraocular lenses (IOLs) aim to surgically correct astigmatism and presbyopia following cataract extraction, optimising vision and eliminating the need for cataract surgery in later years. It is usual to fully correct astigmatism and to provide visual correction for distance and near when prescribing spectacles and contact lenses, however for correction with the lens implanted during cataract surgery, patients are required to purchase the premium IOLs and pay surgery fees outside the National Health Service in the UK. The benefit of using toric IOLs was thus demonstrated, both in standard visual tests and real-world situations. Orientation of toric IOLs during implantation is critical and the benefit of using conjunctival blood vessels for alignment was shown. The issue of centration of IOLs relative to the pupil was also investigated, showing changes with the amount of dilation and repeat dilation evaluation, which must be considered during surgery to optimize the visual performance of premium IOLs. Presbyopia is a global issue, of growing importance as life expectancy increases, with no real long-term cure. Despite enhanced lifestyles, changes in diet and improved medical care, presbyopia still presents in modern life as a significant visual impairment. The onset of presbyopia was found to vary with risk factors including alcohol consumption, smoking, UV exposure and even weight as well as age. A new technique to make measurement of accommodation more objective and robust was explored, although needs for further design modifications were identified. Due to dysphotopsia and lack of intermediate vision through most multifocal IOL designs, the development of a trifocal IOL was shown to minimize these aspects. The current thesis, therefore, emphasises the challenges of premium IOL surgery and need for refinement for optimum visual outcome in addition to outlining how premium IOLs may provide long-term and successful correction of astigmatism and presbyopia.
Resumo:
A new concept of nanoporous metal organic framework particles stabilising emulsions was investigated. The copper benzenetricarboxylate MOF particles adsorbed at the oil/water interface play an exceptional role in stabilising both oil-in-water and water-in-oil emulsions. © 2013 The Royal Society of Chemistry.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT