49 resultados para non-linear equations
Resumo:
Reversed-pahse high-performance liquid chromatographic (HPLC) methods were developed for the assay of indomethacin, its decomposition products, ibuprofen and its (tetrahydro-2-furanyl)methyl-, (tetrahydro-2-(2H)pyranyl)methyl- and cyclohexylmethyl esters. The development and application of these HPLC systems were studied. A number of physico-chemical parameters that affect percutaneous absorption were investigated. The pKa values of indomethacin and ibuprofen were determined using the solubility method. Potentiometric titration and the Taft equation were also used for ibuprofen. The incorporation of ethanol or propylene glycol in the solvent resulted in an improvement in the aqueous solubility of these compounds. The partition coefficients were evaluated in order to establish the affinity of these drugs towards the stratum corneum. The stability of indomethacin and of ibuprofen esters were investigated and the effect of temperature and pH on the decomposition rates were studied. The effect of cetyltrimethylammonium bromide on the alkaline degradation of indomethacin was also followed. In the presence of alcohol, indomethacin alcoholysis was observed and the kinetics of decomposition were subjected to non-linear regression analysis and the rate constants for the various pathways were quantified. The non-isothermal, sufactant non-isoconcentration and non-isopH degradation of indomethacin were investigated. The analysis of the data was undertaken using NONISO, a BASIC computer program. The degradation profiles obtained from both non-iso and iso-kinetic studies show that there is close concordance in the results. The metabolic biotransformation of ibuprofen esters was followed using esterases from hog liver and rat skin homogenates. The results showed that the esters were very labile under these conditions. The presence of propylene glycol affected the rates of enzymic hydrolysis of the ester. The hydrolysis is modelled using an equation involving the dielectric constant of the medium. The percutaneous absorption of indomethacin and of ibuprofen and its esters was followed from solutions using an in vitro excised human skin model. The absorption profiles followed first order kinetics. The diffusion process was related to their solubility and to the human skin/solvent partition coefficient. The percutaneous absorption of two ibuprofen esters from suspensions in 20% propylene glycol-water were also followed through rat skin with only ibuprofen being detected in the receiver phase. The sensitivity of ibuprofen esters to enzymic hydrolysis compared to the chemical hydrolysis may prove valuable in the formulation of topical delivery systems.
Resumo:
Using suitable coupled Navier-Stokes Equations for an incompressible Newtonian fluid we investigate the linear and non-linear steady state solutions for both a homogeneously and a laterally heated fluid with finite Prandtl Number (Pr=7) in the vertical orientation of the channel. Both models are studied within the Large Aspect Ratio narrow-gap and under constant flux conditions with the channel closed. We use direct numerics to identify the linear stability criterion in parametric terms as a function of Grashof Number (Gr) and streamwise infinitesimal perturbation wavenumber (making use of the generalised Squire’s Theorem). We find higher harmonic solutions at lower wavenumbers with a resonance of 1:3exist, for both of the heating models considered. We proceed to identify 2D secondary steady state solutions, which bifurcate from the laminar state. Our studies show that 2D solutions are found not to exist in certain regions of the pure manifold, where we find that 1:3 resonant mode 2D solutions exist, for low wavenumber perturbations. For the homogeneously heated fluid, we notice a jump phenomenon existing between the pure and resonant mode secondary solutions for very specific wavenumbers .We attempt to verify whether mixed mode solutions are present for this model by considering the laterally heated model with the same geometry. We find mixed mode solutions for the laterally heated model showing that a bridge exists between the pure and 1:3 resonant mode 2D solutions, of which some are stationary and some travelling. Further, we show that for the homogeneously heated fluid that the 2D solutions bifurcate in hopf bifurcations and there exists a manifold where the 2D solutions are stable to Eckhaus criterion, within this manifold we proceed to identify 3D tertiary solutions and find that the stability for said 3D bifurcations is not phase locked to the 2D state. For the homogeneously heated model we identify a closed loop within the neutral stability curve for higher perturbation wavenumubers and analyse the nature of the multiple 2D bifurcations around this loop for identical wavenumber and find that a temperature inversion occurs within this loop. We conclude that for a homogeneously heated fluid it is possible to have abrup ttransitions between the pure and resonant 2D solutions, and that for the laterally heated model there exist a transient bifurcation via mixed mode solutions.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications. © 2013 Optical Society of America.