51 resultados para neurofunctional compensation
Resumo:
We develop a multi-theoretic approach, drawing on economic, institutional, managerial power and social comparison literatures to explain the role of the external compensation consultant in the top management pay setting institutional field. Taking advantage of recent disclosure requirements in the UK, we collect data on compensation consultant use in 232 large companies. We show that consultants are a prevalent part of the CEO pay setting scene, and document evidence of all advisor use. Our econometric results show that consultant use is associated with firm size and the equity pay mix. We also show that CEO pay is positively associated with peer firms that share consultants, with higher board and consultant interlocks, and some evidence that where firms supply other business services to the firm, CEO pay is greater. © 2009 Springer Science+Business Media, LLC.
Resumo:
We discuss recent progress on the use of optical and digital phase conjugation techniques for nonlinearity compensation in optical fiber links. We compare the achievable performance gain of phase conjugated twin wave applied in two polarization states and time segments with mid-link optical phase conjugation and digital back propagation. For multicarrier transmission scheme such as orthogonal frequency division multiplexing, two recently proposed schemes, namely phase-conjugated pilots and phase-conjugated subcarrier coding are reviewed.
Resumo:
In this paper, we numerically investigate the impact of polarisation mode dispersion on the efficiency of compensation of nonlinear transmission penalties for systems employing one of more inline phase conjugation devices. We will show that reducing the spacing between phase conjugations allows for significantly improved performance in the presence polarisation mode dispersion or a significant relaxation in the acceptable level of polarization mode dispersion. We show that these results are consistent with previously presented full statistical analysis of nonlinear transmission appropriately adjusted for the reduced section length undergoing compensation.
Resumo:
A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.
Resumo:
This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.
Resumo:
We demonstrate a novel optically tunable dispersion compensator based on pumping a chirped grating made in Er/Yb co-doped fiber. The dispersion was tuned from 900 to 1900ps/nm and also from-600 to-950ps/nm in the experiment. © 2010 Optical Society of America.