111 resultados para multi-mode laser


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pulsed Brillouin fibre ring laser has been developed and we describe its main features. The pump and the Brillouin laser are shown to form an excellent dual frequency source for distributed sensing. A first application for fire detection is demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A technique for direct real-time assessment of a distributed feedback fibre laser cavity conditions during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimise output performance. Negligible wavelength drift is demonstrated over a 52 mW pump power range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity. © 2014 World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wavelength bistability and tunability are demonstrated in a two-sectional quantum-dot mode-locked laser with a nonidentical capping layer structure. The continuous wave output power of 30 mW (25 mW) and mode-locked average power of 27 mW (20 mW) are achieved for 1245 nm (1295 nm) wavelengths, respectively, under the injection current of 300 mA. The largest switching range of more than 50 nm and wavelength tuning range with picosecond pulses and stable lasing wavelengths between 1245 and 1295 nm are demonstrated for gain current of 300 and 330 mA. © 1995-2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have presented and demonstrated efficient mode locking of erbium doped fiber laser using graphene carboxymethylcellulose (CMC) polymer composites. The laser gives out soliton pulse with duration of ∼837 fs, and 0.19 nJ pulse energy. © 2014 OSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We design a Raman fibre laser with a short cavity providing narrow-band generation. The laser is based on a commercial single-mode fibre (980-HP) span of 12 m length. The laser generates up to 11 W of intracavity power. Even at high generation power, the laser spectrum is narrow (less than 200 pm) - several times narrower than for conventional Raman fibre lasers based on longer fibres. The intensity dynamics reveals indications of mode correlations. © 2014 Astro Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the first self-mode-locked optically pumped quantum-dot semiconductor disk laser. Our mode-locked device emits sub-picosecond pulses at a wavelength of 1040 nm and features a record peak power of 460 W at a repetition rate of 1.5 GHz. In this work, we also investigate the temperature dependence of the pulse duration as well as the time-bandwidth product for stable mode locking. © 2014 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning.