51 resultados para milk protein synthesis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Loss of muscle protein is a common feature of wasting diseases where currently treatment is limited. This study investigates the potential of epigallocatechin-3-gallate (EGCg), the most abundant catechin in green tea, to reverse the increased protein degradation and rescue the decreased protein synthesis which leads to muscle atrophy. Methods: Studies were conducted in vitro using murine C2C12myotubes. Increased protein degradation and reduced rates of protein synthesis were induced by serum starvation and tumour necrosis factor-α (TNF-α). Results: EGCg effectively attenuated the depression of protein synthesis and increase in protein degradation in murine myotubes at concentrations as low as 10 μM. Serum starvation increased expression of the proteasome 20S and 19S subunits, as well as the proteasome ‘chymotrypsin-like’ enzyme activity, and these were all attenuated down to basal values in the presence of EGCg. Serum starvation did not increase expression of the ubiquitin ligases MuRF1 and MAFbx, but EGCg reduced their expression below basal levels, possibly due to an increased expression of phospho Akt (pAkt) and phospho forkhead box O3a (pFoxO3a). Attenuation of protein degradation by EGCg was increased in the presence of ZnSO4, suggesting an EGCg-Zn2+complex may be the active species. Conclusion: The ability of EGCg to attenuate depressed protein synthesis and increase protein degradation in the myotubule model system suggests that it may be effective in preserving skeletal muscle mass in catabolic conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The canonical function of eEF1A is delivery of the aminoacylated tRNA to the A site of the ribosome during protein translation, however, it is also known to be an actin binding protein. As well as this actin binding function, eEF1A has been shown to be involved in other cellular processes such as cell proliferation and apoptosis. It has long been thought that the actin cytoskeleton and protein synthesis are linked and eEF1A has been suggested to be a candidate protein to form this link, though very little is understood about the relationship between its two functions. Overexpression of eEF1A has also been shown to be implicated in many different types of cancers, especially cancers that are metastatic, therefore it is important to further understand how eEF1A can affect both translation and the organisation of the actin cytoskeleton. To this end, we aimed to determine the effects of reduced expression of eEF1A on both translation and its non canonical functions in CHO cells. We have shown that reduced expression of eEF1A in this cell system results in no change in protein synthesis, however results in an increased number of actin stress fibres and other proteins associated with these fibres such as myosin IIA, paxillin and vinculin. Cell motility and attachment are also affected by this reduction in eEF1A protein expression. The organisational and motility phenotypes were found to be specific to eEF1A by transforming the cells with plasmids containing either human eEF1A1 or eEF1A2. Though the mechanisms by which these effects are regulated have not yet been established, this data provides evidence to show that the translation and actin binding functions of eEF1A are independent of each other as well as being suggestive of a role for eEF1A in cell motility as supported by the observation that overexpression of eEF1A protein tends to be associated with the cancer cells that are metastatic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an extracellular second messenger, nitric oxide (NO) mediates the modification of proteins through nitrosylation of cysteine andtyrosine residues. Tissue Transglutaminase (TG2) is a Ca2+ activated, sulfhydryl rich protein with 18 free cysteine residues, which catalyzes ε-(γ glutamyl)lysine crosslink between extracellular and intracellular proteins. NO can nitrosylate up to 15 of the cysteine residues in TG2, leading to the irreversible inactivation of the enzyme activity. The interplay between these two agents was revealed for the first time by our study showing that NO inhibited the TG2-induced transcriptional activation of TGFb1and extracellular matrix (ECM) protein synthesis by nitrosylating TG2 in an inactive confirmation with inert catalytic activity. However, nitrosylated TG2 was still able to serve as a novel cell adhesion protein. In the light of our previous findings, in this study we aim to elucidate the NO modified function of TG2 in cell migration using an in vitro model mimicking the tissue matrix remodeling phases of wound healing. Using transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter, we demonstrate that upregulation of TG2 expression and activity inhibited the cell migration through the activation of TGFβ1. Increased TG2 activity led to arise in the biosynthesis and activity of the gelatinases, MMP-2 andMMP-9, while decreasing the biosynthesis and activity of the col-lagenases MMP-1a and MMP-13. NO donor S-Nitroso-N-acetyl-penicillamine (SNAP) treatment relieved the TG2 obstructed-cellmigration by blocking the TG2 enzyme activity. In addition,decrease in TG2 activity due to nitrosylation led to an inhibition of TGFβ1, which in turn affected the pattern of MMP activation. Recent evidence suggests that, once in complex with fibronectin in the ECM, TG2 can interact with syndecan-4 or integrinβ-1and regulate the cell adhesion. In the other part of this study, the possible role of nitrosylated TG2 on the regulation of cell migration during wound healing was investigated with respect to its interactions with integrin β1 (ITGβ1) and syndecan-4 (SDC4). Treatment with TG2 inhibitor Z-DON resulted in a 50% decrease in the TG2 interaction with ITGB1 and SDC4, while increasing concentrations of SNAP firstly led to a substantial decrease and then completely abolished the TG2/ITGβ1 and TG2/SDC4 complex formation on the cell surface. Taken together, data obtained from this study suggests that nitrosylation of TG2 leads to a change not only in the binding partners of TG2 on cell surface but also in TGFβ1-dependent MMP activation, which give rise to an increase in the migration potential of fibroblasts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter describes the modes of action of the major antibiotics and synthetic agents used to treat bacterial infections. Particular attention is given to the biochemical mechanisms by which the agents interfere with biosynthetic processes and the basis for their selective antibacterial action. Interference with the biosynthesis and assembly of structural components of the bacterial cell wall provides the basis for many important groups of antibiotics, including the agents targeting steps in peptidoglycan synthesis. Other agents exploit more subtle differences between bacteria and mammalian cells in fundamental processes such as DNA, RNA and protein synthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose of review: Although cachexia has a major effect on both the morbidity and mortality of cancer patients, information on the mechanisms responsible for this condition is limited. This review summarizes recent data in this area. Recent findings: Cachexia is defined as loss of muscle, with or without fat, frequently associated with anorexia, inflammation and insulin resistance. Loss of adipose mass is due to an increased lipolysis through an increased expression of hormone-sensitive lipase. Adipose tissue does not contribute to the inflammatory response. There is an increased phosphorylation of both protein kinase R (PKR) and eukaryotic initiation factor 2 on the α-subunit in skeletal muscle of cachectic cancer patients, which would lead to muscle atrophy through a depression in protein synthesis and an increase in degradation. Mice lacking the ubiquitin ligase MuRF1 are less susceptible to muscle wasting under amino acid deprivation. Expression of MuRF1 and atrogin-1 is increased by oxidative stress, whereas nitric oxide may protect against muscle atrophy. Levels of interleukin (IL)-6 correlate with cachexia and death due to an increase in tumour burden. Ghrelin analogues and melanocortin receptor antagonists increase food intake and may have a role in the treatment of cachexia. Summary: These findings provide impetus for the development of new therapeutic agents. © 2010 Wolters Kluwer Health

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both cytokines and tumor factors have been implicated in tissue loss in cancercachexia. Loss of adipose tissue is most likely due to the tumor (and host) factorzinc-α2-glycoprotein because of its direct lipolytic effect, ability to sensitizeadipocytes to lipolytic stimuli and increased expression in cachexia. TNF-α andthe tumor factor proteolysis-inducing factor are the major contenders for skeletalmuscle at rophy; both increase protein degradat ion through theubiquitin-proteasome pathway and depres s protein synthesis throughphosphorylation of eukaryotic initiation factor 2α. However, while most studiesreport proteolysis-inducing factor levels to correlate with the appearance ofcachexia, there is some disagreement regarding a correlation between serumlevels of TNF-α and weight loss. Furthermore, only antagonists to proteolysisinducingfactor prevent muscle loss in cancer patients, suggesting that tumorfactors are the most important. © 2010 Future Medicine Ltd.