51 resultados para managerial power approach.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since wind has an intrinsically complex and stochastic nature, accurate wind power forecasts are necessary for the safety and economics of wind energy utilization. In this paper, we investigate a combination of numeric and probabilistic models: one-day-ahead wind power forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical Weather Prediction (NWP) model. Firstly the wind speed data from NWP was corrected by a GP. Then, as there is always a defined limit on power generated in a wind turbine due the turbine controlling strategy, a Censored GP was used to model the relationship between the corrected wind speed and power output. To validate the proposed approach, two real world datasets were used for model construction and testing. The simulation results were compared with the persistence method and Artificial Neural Networks (ANNs); the proposed model achieves about 11% improvement in forecasting accuracy (Mean Absolute Error) compared to the ANN model on one dataset, and nearly 5% improvement on another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicle-to-Grid (V2G) system with efficient Demand Response Management (DRM) is critical to solve the problem of supplying electricity by utilizing surplus electricity available at EVs. An incentivilized DRM approach is studied to reduce the system cost and maintain the system stability. EVs are motivated with dynamic pricing determined by the group-selling based auction. In the proposed approach, a number of aggregators sit on the first level auction responsible to communicate with a group of EVs. EVs as bidders consider Quality of Energy (QoE) requirements and report interests and decisions on the bidding process coordinated by the associated aggregator. Auction winners are determined based on the bidding prices and the amount of electricity sold by the EV bidders. We investigate the impact of the proposed mechanism on the system performance with maximum feedback power constraints of aggregators. The designed mechanism is proven to have essential economic properties. Simulation results indicate the proposed mechanism can reduce the system cost and offer EVs significant incentives to participate in the V2G DRM operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel dc-dc converter topology to achieve an ultrahigh step-up ratio while maintaining a high conversion efficiency. It adopts a three degree of freedom approach in the circuit design. It also demonstrates the flexibility of the proposed converter to combine with the features of modularity, electrical isolation, soft-switching, low voltage stress on switching devices, and is thus considered to be an improved topology over traditional dc-dc converters. New control strategies including the two-section output voltage control and cell idle control are also developed to improve the converter performance. With the cell idle control, the secondary winding inductance of the idle module is bypassed to decrease its power loss. A 400-W dc-dc converter is prototyped and tested to verify the proposed techniques, in addition to a simulation study. The step-up conversion ratio can reach 1:14 with a peak efficiency of 94% and the proposed techniques can be applied to a wide range of high voltage and high power distributed generation and dc power transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.