71 resultados para lichen
Resumo:
A lichen is an intimate association between an alga and a fungus and is regarded as one of the best examples of ‘mutualism’ or ‘symbiosis’ involving microorganisms. In lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble polyol ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may be involved in stress resistance. The crustose lichen Rhizocarpon geographicum (L.) DC., has an unusual thallus structure consisting of discrete granules (areolae) containing the algal component growing in association with a non-lichenised fungal hypothallus that extends beyond the areolae to form a marginal ring. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three polyols were greater in the central areolae than in the marginal hypothallus. In addition, the ratios of polyols in the marginal hypothallus to that in the central areolae varied through the year. The concentration of an individual poyol in the hypothallus was correlated primarily with the concentrations of the other polyols in the hypothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal hypothallus compared with the central areolae suggests either a lower demand for carbohydrate by the hypothallus or limited transport of polyols from areolae to hypothallus, and may explain the low growth rates of this species. In addition, polyols appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.
Resumo:
In symbiotic lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble carbohydrate ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may have a more protective function and be important in stress resistance. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three soluble carbohydrates were greater in the central areolae than in the marginal prothallus. In addition, the ratio of mannitol in the prothallus to that in the areolae was least in July. The concentration of an individual carbohydrate in the prothallus was correlated primarily with the concentrations of the other carbohydrates in the prothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal prothallus compared with the central areolae suggests either a lower demand for carbohydrate by the prothallus or limited transport from areolae to prothallus and may explain the low growth rates of this species. In addition, soluble carbohydrates appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.
Resumo:
Radial growth and growth in mass of lichens is influenced by climatic and microclimatic factors and also by substratum factors such as rock and bark texture, chemistry, and nutrient enrichment. Seasonal fluctuations in growth, as measured by radial growth rate (RaGR) per month, often correlate best with average or total rainfall, the number of rain days, or rainfall in a specific season. Temperature is also considered to be an important climatic factor in some studies. Interactions between microclimatic factors and especially light intensity, temperature, and moisture are the most important in determining local annual growth rates. The physical and chemical nature of the substratum has a profound influence on the growth of foliose lichens. Hence, the effects of texture, porosity, rate of drying, and the physical changes of the substratum on growth are likely to influence lichen distributions. Bird droppings may influence growth and survival by smothering the thalli, altering the pH, or adding inhibitory and stimulatory compounds. Nitrogen and phosphate availability may also influence growth. Chemical factors may also have an important influence on lichens of maritime rocks, the effect of salinity and calcium ions being of particular importance. Zinc, copper, and mercury may also be important in lichen growth as they have been shown to affect the chlorophyll content of lichen algae. Effects of environmental factors on growth influence the competitive ability of lichens thus influencing their ecology and distribution.
Resumo:
Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within-site growth variation, radial growth rates (RaGRs) of thalli of the fast-growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S-facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image-J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mmyr-1 and R. geographicum from 0.10 to 1.50 mmyr-1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry. © 2014 Swedish Society for Anthropology and Geography.
Resumo:
A lichen is an intimate association between an alga and a fungus and is regarded as one of the best examples of ‘mutualism’ or ‘symbiosis’ involving microorganisms. In lichens which have Trebouxia as the algal partner, photosynthesis by the algae results in the production of the soluble polyol ribitol which is then transported to the fungus where it is converted to arabitol and mannitol. Within the fungus, arabitol may act as a short-term carbohydrate reserve while mannitol may be involved in stress resistance. The crustose lichen Rhizocarpon geographicum (L.) DC., has an unusual thallus structure consisting of discrete granules (areolae) containing the algal component growing in association with a non-lichenised fungal hypothallus that extends beyond the areolae to form a marginal ring. The concentrations of ribitol, arabitol, and mannitol were measured, using gas chromatography, in the central areolae and marginal hypothallus of the crustose lichen Rhizocarpon geographicum (L.) DC. growing on slate rocks in north Wales, UK. The concentrations of all three polyols were greater in the central areolae than in the marginal hypothallus. In addition, the ratios of polyols in the marginal hypothallus to that in the central areolae varied through the year. The concentration of an individual poyol in the hypothallus was correlated primarily with the concentrations of the other polyols in the hypothallus and not to their concentrations in the areolae. Low concentration of ribitol, arabitol, and mannitol in the marginal hypothallus compared with the central areolae suggests either a lower demand for carbohydrate by the hypothallus or limited transport of polyols from areolae to hypothallus, and may explain the low growth rates of this species. In addition, polyols appear to be partitioned differently through the year with an increase in mannitol compared with arabitol in more stressful periods.
Resumo:
Lichenometry is one of the most widely used methods available for dating the surface age of various substrata including rock surfaces, boulders, walls, and archaeological remains. It depends on the assumption that if the lag time before colonisation of a substratum by a lichen is known and lichen age can be estimated, then a minimum date can be obtained by measuring the diameter (or another property related to size) of the largest lichen at the site. Lichen age can be determined by variety of methods including calibrating lichen size against surfaces of known age (‘indirect lichenometry’), by constructing a growth rate-size curve from direct measurement of lichen growth (‘direct lichenometry’), using radio-carbon (RC) dating, and from lichen ‘growth rings’. This chapter describes: (1) lichen growth rates and longevity, (2) methods of estimating lichen age, (3) the methodology of lichenometry and (4) applications of lichenometry. Despite its limitations, lichenometry is likely to continue to play an important role in dating a variety of surfaces and also in providing data that contribute to the debate regarding global warming and climate change.
Resumo:
Lichenometry is one of the most widely used methods of dating the surface age of substrata including rock surfaces, boulders, walls, and archaeological remains and has been particularly important in dating late Holocene glacial events. Yellow-green species of the crustose genus Rhizocarpon have been the most useful lichens in lichenometry because of their low growth rates and longevity. This review describes: (1) the biology of the genus Rhizocarpon, (2) growth rates and longevity, (3) environmental growth effects, (4) methods of estimating lichen age, (5) the methodology of lichenometry, (6) applications to dating glacial events, and (7) future research. Lichenometry depends on many assumptions, most critically that if the lag time before colonisation of a substratum is known and lichen age can be estimated, then a minimum surface age date can be obtained by measuring the size of the largest Rhizocarpon thallus. Lichen age can be estimated by calibrating thallus size against surfaces of known age (‘indirect lichenometry’), by constructing a growth rate-size curve from direct measurement of growth (‘direct lichenometry’), using radio-carbon (RC) dating, or from lichen ‘growth rings’. Future research should include a more rigorous investigation of the assumptions of lichenometry, especially whether the largest thallus present at a site is a good indicator of substratum age, and further studies on the establishment, development, growth, senescence, and mortality of Rhizocarpon lichens.
Resumo:
The saxicolous lichen vegetation on Ordovician slate rock at the mouth of the River Dovey, South Merionethshire, Wales was described in relation to several environmental variables which include aspect, slope angle, light intensity, rock porosity, rock microtopography and rock stability. Each of the measured environmental variables was shown to influence the lichen vegetation. A number of groups of species which were characteristic of certain environments were described. The data from the saxicolous lichen communities were analysed using multivariate analysis. Qualitative and quantitative data were ordinated, the qualitative data being easier to interpret ecologically, and site number (which reflects distance from the sea and altitude), rock porosity and light intensity were shown to be important environmental variables. A classification of the data was also carried out. The results of the ordination and classification were combined together and a model constructed which describes saxicolous lichen vegetation. A method which uses the model as an aid to the design and interpretation of field experiments is described. The model is applied to an experiment which investigates the effect on growth of transplanting four saxicolous lichens to different aspects. Growth was inhibited in Physcia orbicularis and Parmelia conspersa on rock surfaces of northwest aspect compared with growth on rock surfaces of southeast aspect. Growth was inhibited in Parmelia glabratula ssp. fuliginosa on rock surfaces of southeast aspect compared with rock surfaces of northwesr aspect. The growth of Parmelia saxatilis was similar at both southeast and northwesr aspects. Growth inhibition or stimulation in thalli of Physcia orbicularis, Parmelia conspersa and Parmelia glabratula ssp. fuliginosa after transplantation was consistent with the predictions of the model while the results for Parmelia saxatilis were not as expected. There was evidence that the frequency of Parmelia conspersa and Parmelia glabratula at a site is related to an effect of the environment on the growth of the thalli. There was also evidence that the frequency of Physcia orbicularis at a site is related to an effect of the environment on the establishment phase of the thalli and for the competitive exclusion of Parmelia saxatilis thalli from southeast facing rock surfaces. The distribution of lichens in relation to height on nine rock surfaces was investigated. It was suggested that the distribution of the lichens was influenced by microclimatic factors which are related to height on the rock, environmental variables which are associated with the rock substratum (e.g. rock porosity and rock microtopography) and by historical factors. The pattern of one crustose and one foliose lichen on four rock surfaces of different aspect and slope was investigated. On the vertically inclined surface the density of small thalli of Buellia aethalea and Parmelia glabratula ssp fuliginosa was correlated with the microtopography of the surface in transects horizontally across the rock surface but not in transects vertically down the rock surface. there were consitent differences in the scale and intensity of pattern horizontally and vertically and also a decrease in the intensity of pattern vertically as the slope of the rock surface decreased. These results were consistent with the suggestion of a gradient of microclimatic factors up the rock. The differences in the scale and intensity of pattern in different size classes in the population were consistent with the changes in pattern with time which have been shown to occur during succession in sand dune and salt marsh vegetation. The relationship between thallus size and height on a rock surface and between the radial growth rate and location of a thallus on a rock surface were investigated. Thalli of Parmelia glabratula ssp. fuliginosa were larger at the top of the rock surface than at the bottom and the data were consistent with the suggestion that the colonisation of the rock surface began at the top and, in time, spread downwards. The radial growth rate of the thalli could not be related to variation in slope, porosity, microtopography or directly to height on the rock but could be related to the horizontal location of the thalli on the rock. These results were consistent with the suggestion that here is a gradient of microclimatic factors across the rock surface which is also modified by height on the rock surface. The succession of lichen communities was described by relating the vegetation to rock porosity, rock microtopography, species diversity and rock stability. An initial stage dominated by crustose lichens leads to communities dominated by crustose, foliose and fruticose species. In the late stages of the succession on some rock surfaces crustose species again become dominant. The occurrence of the climax state and cyclic vegetation change in lichen communities are discussed. A mthod of estimating the age structure of a lichen population by relating thallus size to growth rate is described. The sources of error in the method are discussed in some detail and several refinements suggested to increase the accuracy of the method. The population dynamics of Parmelia glabratula ssp. fuliginosa was investigated by applying life tables to the age structures of eight different populations. The data were consistent with a period of relatively constant recruitment of thalli into the populations. Mortality in lichen populations was divided into deaths which occur after fragmentation of the thallus and deaths which occur after catastrophic environmental events. THe data suggest that the rate of fragmenting death is dependent on the age of the thallus while the rate of catastrophic death is dependent on the number of thalli established in an age class. A comparison of the numbers of thalli in each age class in the eight populations suggested that population density is controlled firstly, by climate and secondly, by variables related to the local rock surface environment. The rate of fragmenting death is related to the diversity of the community and the influence of diversity together with environmental variables in fluctuating or cyclic changes in population number.
Resumo:
Lichenometric dating (lichenometry) involves the use of lichen measurements to estimate the age of exposure of various substrata. Because of low radial growth rates and considerable longevity, species of the crustose lichen genus Rhizocarpon have been the most useful in lichenometry. The primary assumption of lichenometry is that colonization, growth and mortality of Rhizocarpon are similar on surfaces of known and unknown age so that the largest thalli present on the respective faces are of comparable age. This review describes the current state of knowledge regarding the biology of Rhizocarpon and considers two main questions: (1) to what extent does existing knowledge support this assumption; and (2) what further biological observations would be useful both to test its validity and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon literature identified gaps in knowledge regarding early development, the growth rate/size curve, mortality, regeneration, competitive effects, colonization, and succession on rock surfaces. The data suggest that these processes may not be comparable on different rock surfaces, especially in regions where growth rates and thallus turnover are high. In addition, several variables could differ between rock surfaces and influence maximum thallus size, including rate and timing of colonization, radial growth rates, environmental differences, thallus fusion, allelopathy, thallus mortality, colonization and competition. Comparative measurements of these variables on surfaces of known and unknown age may help to determine whether the basic assumptions of lichenometry are valid. Ultimately, it may be possible to take these differences into account when interpreting estimated dates.
Resumo:
This paper reviews evidence from previous growth-rate studies on lichens of the yellow-green species of Subgenus Rhizocarpon - the family most commonly used in lichenometric dating. New data are presented from Rhizocarpon section Rhizocarpon thalli growing on a moraine in southern Iceland over a period of 4.33yr. Measurements of 38 lichen thalli, between 2001 and 2005, show that diametral growth rate (DGR, mmyr-1) is a function of thallus size. Growth rates increase rapidly in small thalli (<10 mm diameter), remain high (ca. 0.8 mm yr-1) and then decrease gradually in larger thalli (>50 mm diameter). Mean DGR in southern Iceland, between 2001 and 2005, was 0.64 mm yr-1 (SD = 0.24). The resultant growth-rate curve is parabolic and is best described by a third-order polynomial function. The striking similarity between these findings in Iceland and those of Armstrong (1983) in Wales implies that the shape of the growth-rate curve may be characteristic of Rhizocarpon geographicum lichens. The difference between the absolute growth rate in southern Iceland and Wales (ca. 66% faster) is probably a function of climate and micro-environment between the two sites. These findings have implications for previous lichenometric-dating studies, namely, that those studies which assume constant lichen growth rates over many decades are probably unreliable. © British Geological Survey/ Natural Environment Research Council copyright 2006.
Resumo:
The growth curves of four common species of crustose lichens, viz., Buellia aethalea (Ach.) Th. Fr., Lecidea tumida Massai., Rhizocarpon geographicum (L.) DC., and Rhizocarpon reductum Th. Fr. were studied at a site in south Gwynedd, north Wales, UK. Radial growth rates (RGR, mm 1.5 yr-1) were greatest in thalli of R. reductum and least in R. geographicum. Variation in RGR between thalli was greater in B. aethalea and L. tumida than in the species of Rhizocarpon. The relationship between growth rate and thallus diameter was not asymptotic; RGR increasing in smaller thalli to a maximum and then declining in larger diameter thalli. A polynomial curve was fitted to the data; the growth curves being fitted best by a second-order (quadratic) curve, the best fit to this model being shown by B. aethalea. A significant linear regression with a negative slope was also fitted to the growth of the larger thalli of each species. The data suggest that the growth curves of the four crustose lichens differ significantly from the asymptotic curves of foliose lichen species. A phase of declining RGR in larger thalli appears to be characteristic of crustose lichens and is consistent with data from lichenometric studies.
Resumo:
A sample of run-off water from a vertical, slate rock surface in Wales, U.K. contained abundant fragments of the lichen Parmelia glabratula ssp. fuliginosa from about 0.6 to 8.0 mm in diameter, a few fragments of Parmelia conspersa from 0.6 to 4.0 mm in diameter and a large number of unidentified propagules from 0.2 to 0.5 mm in diameter. The colonization of permanent plots on the rock surface was studied over six years. At the end of the experiment relatively few thalli of Parmelia conspersa, Parmelia glabratula ssp. fuliginosa and Buellia aethalea had established in plots on undisturbed and newly-exposed slate. Fragments (2 mm in diameter) of Parmelia conspersa placed on horizontal pieces of slate survived up to 120 days in cracks, 20 days on a thin smear of bird droppings but only 2-3 days on smooth slate, against small joints in the rock or in small holes. Isidia of Parmelia conspersa placed on horizontal pieces of slate established equally in plots on smooth undisturbed slate and in plots on the surface exposed after the removal of large Parmelia conspersa thalli, but less well on newly-exposed slate. These results suggest that lichen propagules are abundant in run-off water but establishment is a hazardous process. This may be attributable to a shortage of suitable sites on the substratum for attachment of propagules.
Resumo:
Saxicolous lichen vegetation on Ordovician rock at the mouth of the River Dovey, South Merionethshire, is examined in relation to aspect, slope angle, light intensity, rock porosity, rock microtopography and rock stability. A number of characteristic groups of species are recognized. The environmental factors measured are discussed in some detail. In addition, the wide tolerance of most saxicolous species is emphasized.
Resumo:
Degeneration of the older parts of foliose lichen thalli often lead to the formation of a space or 'window' in the centre of the colonies. The percentage of thalli of different size which exhibited 'windows' was studied in twenty saxicolous lichen populations in south Gwynedd, Wales. The proportion of thalli with 'windows' increased with thallus size. The size class at which 50% and 100% of thalli exhibited 'windows' varied between populations. Differences between populations were not correlated with distance from the sea, aspect, slope or porosity of the substrate or the total number of lichen species present. However, a higher percentage of smaller thalli had 'windows' on rock surfaces with a greater lichen cover. There were no significant differences in the levels of Ca, Mg, Cu or Zn in large (>4 cm) and small (<2 cm) Parmelia conspersa (Ehrh. ex Ach.) Ach. thalli or in the centres and marginal lobes of these thalli. The concentration of ribitol, arabitol and mannitol was significantly reduced in the centre of large thalli compared with the margin of large thalli and the centre of small thalli. However, carbohydrate levels were similar in the centre of large thalli and the margin of small thalli. The data suggest that loss of the thallus centre is a degenerative process related to thallus size. In the field, the formation of 'windows' may be related to the intensity of competition on a substrate. Central degeneration was not associated with a deficiency or an accumulation of Ca, Mg, Cu and Zn in the thallus centre. However, degeneration may be associated with a reduction in carbohydrates in the centre compared with the marginal lobes.
Resumo:
To field test the hypothesis that lichen thalli can use environmental sources of carbon, solutions of ribitol, arabitol and mannitol were added to intact thalli of Xanthoparmelia conspersa (Ach.) Hale and a yellow species of Rhizocarpon (Rhizocarpon Ram. Em. Th. Fr. subgenus Rhizocarpon). In addition, ribitol and an arabitol/mannitol mixture were added to the marginal hypothalli of Rhizocarpon thalli after removal of the areolae. Carbohydrates were added at the beginning of 2- or 3-month growth periods for up to 15 months at concentrations approximately three times the levels estimated to be in the thalli. Addition of carbohydrates to intact thalli of both species had no effect on total radial growth but addition of mannitol significantly increased growth of X. conspersa thalli in the September/October growth period in one experiment. However, this effect was not repeated in a subsequent experiment in which different concentrations of mannitol were added to intact thalli. Addition of ribitol to hypothalli of Rhizocarpon resulted in significantly increased growth in the first few months of the experiment, growth then declining to levels below that of untreated thalli. The data suggest that although hypothalli of Rhizocarpon may have the ability to utilise exogenous carbohydrates for growth, there was little evidence that intact thalli of either species utilise environmental sources of carbon in the field.