55 resultados para epilepsy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About one third of patients with epilepsy are refractory to medical treatment. For these patients, alternative treatment options include implantable neurostimulation devices such as vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation systems (RNS). We conducted a systematic literature review to assess the available evidence on the clinical efficacy of these devices in patients with refractory epilepsy across their lifespan. VNS has the largest evidence base, and numerous randomized controlled trials and open-label studies support its use in the treatment of refractory epilepsy. It was approved by the US Food and Drug Administration in 1997 for treatment of partial seizures, but has also shown significant benefit in the treatment of generalized seizures. Results in adult populations have been more encouraging than in pediatric populations, where more studies are required. VNS is considered a safe and well-tolerated treatment, and serious side effects are rare. DBS is a well-established treatment for several movement disorders, and has a small evidence base for treatment of refractory epilepsy. Stimulation of the anterior nucleus of the thalamus has shown the most encouraging results, where significant decreases in seizure frequency were reported. Other potential targets include the centromedian thalamic nucleus, hippocampus, cerebellum, and basal ganglia structures. Preliminary results on RNS, new-generation implantable neurostimulation devices which stimulate brain structures only when epileptic activity is detected, are encouraging. Overall, implantable neurostimulation devices appear to be a safe and beneficial treatment option for patients in whom medical treatment has failed to adequately control their epilepsy. Further large-scale randomized controlled trials are required to provide a sufficient evidence base for the inclusion of DBS and RNS in clinical guidelines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to hear a target signal over background noise is an important aspect of efficient hearing in everyday situations. This mechanism depends on binaural hearing whenever there are differences in the inter-aural timing of inputs from the noise and the signal. Impairments in binaural hearing may underlie some auditory processing disorders, for example temporal-lobe epilepsies. The binaural masking level difference (BMLD) measures the advantage in detecting a tone whose inter-aural phase differs from that of the masking noise. BMLD’s are typically estimated psychophysically, but this is challenging in children or those with cognitive impairments. The aim of this doctorate is to design a passive measure of BMLD using magnetoencephalography (MEG) and test this in adults, children and patients with different types of epilepsy. The stimulus consists of Gaussian background noise with 500-Hz tones presented binaurally either in-phase or 180° out-of-phase between the ears. Source modelling provides the N1m amplitude for the in-phase and out-of-phase tones, representing the extent of signal perception over background noise. The passive BMLD stimulus is successfully used as a measure of binaural hearing capabilities in participants who would otherwise be unable to undertake a psychophysical task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. Documenting the natural history associated with continued VGB exposure is important when making decisions about the risk and benefits associated with the treatment. Due to its speed the Swedish Interactive Threshold Algorithm (SITA) has become the algorithm of choice when carrying out Full Threshold automated static perimetry. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. As the abnormal model is based on glaucomatous behaviour this algorithm has not been validated for VGB recipients. We aim to assess the clinical utility of the SITA algorithm for accurately mapping VGB attributed field loss. Methods: The sample comprised one randomly selected eye of 16 patients diagnosed with epilepsy, exposed to VGB therapy. A clinical diagnosis of VGB attributed visual field loss was documented in 44% of the group. The mean age was 39.3 years∈±∈14.5 years and the mean deviation was -4.76 dB ±4.34 dB. Each patient was examined with the Full Threshold, SITA Standard and SITA Fast algorithm. Results: SITA Standard was on average approximately twice as fast (7.6 minutes) and SITA Fast approximately 3 times as fast (4.7 minutes) as examinations completed using the Full Threshold algorithm (15.8 minutes). In the clinical environment, the visual field outcome with both SITA algorithms was equivalent to visual field examination using the Full Threshold algorithm in terms of visual inspection of the grey scale plots, defect area and defect severity. Conclusions: Our research shows that both SITA algorithms are able to accurately map visual field loss attributed to VGB. As patients diagnosed with epilepsy are often vulnerable to fatigue, the time saving offered by SITA Fast means that this algorithm has a significant advantage for use with VGB recipients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetoencephalography (MEG) offers significant opportunities for the localization and characterization of focal and generalized epilepsies, but its potential has so far not been fully exploited, as the evidence for its effectiveness is still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings on school-age children typically rely on the use of MEG systems that were designed for adults and children's smaller head-size and stature can cause significant problems. Reduced signal-to-noise ratio when recording from smaller heads, increased movement, reduced sensor coverage of anterior temporal regions and incomplete insertion into the MEG helmet can all reduce the quality of data collected from children. We summarize these challenges and suggest some practical solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most pressing demands on electrophysiology applied to the diagnosis of epilepsy is the non-invasive localization of the neuronal generators responsible for brain electrical and magnetic fields (the so-called inverse problem). These neuronal generators produce primary currents in the brain, which together with passive currents give rise to the EEG signal. Unfortunately, the signal we measure on the scalp surface doesn't directly indicate the location of the active neuronal assemblies. This is the expression of the ambiguity of the underlying static electromagnetic inverse problem, partly due to the relatively limited number of independent measures available. A given electric potential distribution recorded at the scalp can be explained by the activity of infinite different configurations of intracranial sources. In contrast, the forward problem, which consists of computing the potential field at the scalp from known source locations and strengths with known geometry and conductivity properties of the brain and its layers (CSF/meninges, skin and skull), i.e. the head model, has a unique solution. The head models vary from the computationally simpler spherical models (three or four concentric spheres) to the realistic models based on the segmentation of anatomical images obtained using magnetic resonance imaging (MRI). Realistic models – computationally intensive and difficult to implement – can separate different tissues of the head and account for the convoluted geometry of the brain and the significant inter-individual variability. In real-life applications, if the assumptions of the statistical, anatomical or functional properties of the signal and the volume in which it is generated are meaningful, a true three-dimensional tomographic representation of sources of brain electrical activity is possible in spite of the ‘ill-posed’ nature of the inverse problem (Michel et al., 2004). The techniques used to achieve this are now referred to as electrical source imaging (ESI) or magnetic source imaging (MSI). The first issue to influence reconstruction accuracy is spatial sampling, i.e. the number of EEG electrodes. It has been shown that this relationship is not linear, reaching a plateau at about 128 electrodes, provided spatial distribution is uniform. The second factor is related to the different properties of the source localization strategies used with respect to the hypothesized source configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On 5 October 2015 the inquest into Connor Sparrowhawk’s death began. A young autistic man, aged 18, died in the bath on 4 July 2013. He had a seizure. The rolling tweets from @LBInquest are harrowing to say the least. Unimaginable torture for Sara and Richard (his mother and step-father), as well as his siblings and others caring. Comments from the inquest such as ‘I felt that Connor should be checked on every 5 or 10 minutes when he was in the bath because of his epilepsy’ and ‘ensuring someone was outside the door when he was bathing was basic nursing care’ sound all the alarm bells for lack of care, because allegedly this did not happen. Clearly there was no one person looking out for him when he needed it the most. On 16 October 2015 the inquest jury found Connor’s death was contributed by neglect. This article will explore the absence of care in a care-less system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: The Tuberous Sclerosis 2000 Study is the first comprehensive longitudinal study of tuberous sclerosis (TS) and aims to identify factors that determine prognosis. Mode of presentation and findings at initial assessments are reported here. Methods: Children aged 0-16 years newly diagnosed with TS in the UK were evaluated. Results: 125 children with TS were studied. 114 (91%) met clinical criteria for a definite diagnosis and the remaining 11 (9%) had pathogenic TSC1 or TSC2 mutations. In families with a definite clinical diagnosis, the detection rate for pathogenic mutations was 89%. 21 cases (17%) were identified prenatally, usually with abnormalities found at routine antenatal ultrasound examination. 30 cases (24%) presented before developing seizures and in 10 of these without a definite diagnosis at onset of seizures, genetic testing could have confirmed TS. 77 cases (62%) presented with seizures. Median age at recruitment assessment was 2.7 years (range:4 weeks-18 years). Dermatological features of TS were present in 81%. The detection rate of TS abnormalities was 20/107 (19%) for renal ultrasound including three cases with polycystic kidney disease, 51/88 (58%) for echocardiography, 29/35 (83%) for cranial CT and 95/104 (91%) for cranial MRI. 91% of cases had epilepsy and 65% had intellectual disability (IQ<70). Conclusions: Genetic testing can be valuable in confirming the diagnosis. Increasing numbers of cases present prenatally or in early infancy, before onset of seizures, raising important questions about whether these children should have EEG monitoring and concerning the criteria for starting anticonvulsant therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bilateral Perisylvian Syndrome (BPS) often presents with epilepsy and significant behavioral impairments that can include mental retardation, dysarthria, delayed speech development, and delayed fine motor development (Graff-Radford et al., 1986 and Kuzniecky et al., 1993). While a small subset of BPS cases have been described as having relatively isolated language delays (Leventer et al., 2010), BPS is not expected in children with dyslexia. As part of a Medical University of South Carolina, IRB approved multi-site study involving retrospective and de-identified dyslexia data, we unexpectedly identified a 14.05 year old male with evidence of BPS whose father had been diagnosed with dyslexia and dysgraphia. This child had been recruited for a neuroimaging study on dyslexia from a school specializing in educating children with dyslexia. The T1-weighted MRI scan from this child demonstrated a highly unusual perisylvian sulcal/gyral patterning that is a defining feature of BPS (Fig. 1). BPS cases exhibit bilateral dysgenesis of the Sylvian fissure and surrounding gyri, which appears to occur because of a limited or absent arcuate fasciculus (Kilinc, Ekinci, Demirkol, & Agan, 2015). This BPS case also had a relatively enlarged atrium of the lateral ventricle that is consistent with the BPS anatomical presentation and reduction of parietal white matter (Graff-Radford et al., 1986, Kilinc et al., 2015 and Toldo et al., 2011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in pediatric central nervous system pathophysiology is focused around three primary goals: identification of neurodevelopmental disorders, understanding the differences in brain development which underlie these disorders, and improving treatment for these young children. Autism spectrum disorders (ASDs) are a complex set of disorders which are characterized by difficulties in language and social interactions. These behavioral measures are highly variable and a number of underlying causes can generate similar behavioral effects. Therefore, it is important to identify neurophysiological markers to better identify and characterize these disorders. Recent ASD findings using MEG show atypical latency and amplitude responses and poor cortical connectivity in children with ASDs across the cognitive spectrum from basic auditory processing, multisensory integration, to face and semantic processing. These results further support the view that ASDs are a complex neurologically-based disorder. On the other hand, the cause of Down syndrome is well understood as originating from a partial or full replication of chromosome 21. However, the cognitive and neurological consequences of this chromosomal abnormality are not yet well understood. Using a simple observation and motor execution task, poor functional connectivity in sensory-motor areas, particularly in the gamma band range, has been identified in children with Down syndrome and is consistent with behavioral deficits in the sensory-motor realm. Additional studies are needed to better understand whether targeted identification of these abnormalities can facilitate treatment in this disorder. Finally, while epilepsy can be reliably diagnosed, seizure control is still limited in many cases where the seizure onset zone is not readily apparent. Advances in pre-surgical evaluation and intra-operative co-registration will be described. These studies describing pediatric CNS pathophysiology will be discussed. © Springer-Verlag 2010.