62 resultados para coherent magnify


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anterior segment optical coherent tomography (AS-OCT, Visante; Zeiss) is used to examine meridional variation in anterior scleral thickness (AST) and its association with refractive error, ethnicity and gender. Scleral cross-sections of 74 individuals (28 males; 46 females; aged between 18-40 years (27.7±5.3)) were sampled twice in random order in 8 meridians: [superior (S), inferior (I), nasal (N), temporal (T), superior-temporal (ST), superior-nasal (SN), inferior-temporal (IT) and inferior-nasal (IN)]. AST was measured in 1mm anterior-toposterior increments (designated the A-P distance) from the scleral spur (SS) over a 6mm distance. Axial length and refractive error were measured with a Zeiss IOLMaster biometer and an open-view binocular Shin-Nippon autorefractor. Intra- And inter-observer variability of AST was assessed for each of the 8 meridians. Mixed repeated measures ANOVAs tested meridional and A-P distance differences in AST with refractive error, gender and ethnicity. Only right eye data were analysed. AST (mean±SD) across all meridians and A-P distances was 725±46μm. Meridian SN was the thinnest (662±57μm) and I the thickest (806 ±60μm). Significant differences were found between all meridians (p<0.001), except S:ST, IT:IN, IT:N and IN:N. Significant differences between A-P distances were found except between SS and 6 mm and between 2 and 4mm. AST measurements at 1mm (682±48 μm) were the thinnest and at 6mm (818±49 μm) the thickest (p<0.001); a significant interaction occurred between meridians and A-P distances (p<0.001). AST was significantly greater (p<0.001) in male subjects but no significant differences were found between refractive error or ethnicity. Significant variations in AST occur with regard to meridian and distance from the SS and may have utility in selecting optimum sites for pharmaceutical or surgical intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show, by numerical simulation, that the impact of tight optical filtering in high speed coherent 50% RZ-BPSK systems can be greatly reduced by offsetting the filter (equivalent to laser detuning). We show that by offsetting the filter by up to half the filter bandwidth, that system performance is improved by > 2.5 dB in the calculated 'Q' for an OSNR of 12 dB. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modern electronic nonlinearity equalizer (NLE) based on inverse Volterra series transfer function (IVSTF) with reduced complexity is applied on coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals for next-generation long- and ultra-long-haul applications. The OFDM inter-subcarrier crosstalk effects are explored thoroughly using the IVSTF-NLE and compared with the case of linear equalization (LE) for transmission distances of up to 7000 km. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the compensation of the equalization enhanced phase noise (EEPN) in the long-haul n-level phase shift keying (n-PSK) coherent optical transmission system, by employing a scheme of phase modulated optical pilot carrier. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative analysis on three carrier phase extraction approaches, including a one-tap normalized least mean square method, a block-average method, and a Viterbi-Viterbi method, in coherent transmission system considering equalization enhanced phase noise. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase noise enhancement due to digital dispersion equalization is investigated, which indicates that the phase noise from transmitter laser can also interact with the dispersion depending on the choice of digital dispersion compensation methods. © OSA 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a unidirectional frequency dissemination scheme for high-fidelity optical carriers deployable over telecommunication networks. For the first time, a 10 Gb/s Binary Phase Shift Keying (BPSK) signal from an ultra-narrow linewidth laser was transmitted through a field-installed optical fibre with round-trip length of 124 km between Cork City and town of Clonakilty, without inline optical amplification. At the receiver, using coherent communication techniques and optical injection-locking the carrier was recovered with noise suppression. The beat signal between the original carrier at the transmitter and recovered carrier at the receiver shows a linewidth of 2.8 kHz. Long term stability measurements revealed fractional instabilities (True Allan deviation) of 3.3 × 10-14 for 1 s averaging time, prior to phase noise cancellation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed quantitative numerical analysis of partially coherent quasi-CW fiber laser is performed on the example of high-Q cavity Raman fiber laser. The key role of precise spectral performances of fiber Bragg gratings forming the laser cavity is clarified. It is shown that cross phase modulation between the pump and Stokes waves does not affect the generation. Amplitudes of different longitudinal modes strongly fluctuate obeying the Gaussian distribution. As intensity statistics is noticeably non-exponential, longitudinal modes should be correlated. © 2011 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the use of the 2-D differential decoding to improve the robustness of dual-polarization optical packet receivers and is demonstrated in a wavelength switching scenario for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the derivation of a new master equation for active mode locking in lasers that fully takes into account the coherent effects of the light matter interaction through a peculiar adiabatic elimination technique. The coherent effects included in our model could be relevant to describe properly mode-locked semiconductor lasers where the standard Haus' Master Equation predictions show some discrepancy with respect to the experimental results and can be included in the modelling of other mode locking techniques too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by ∼1 dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis presents a detailed study of different Raman fibre laser (RFL) based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL based amplifications techniques were characterised from different aspects, including signal/noise power distributions, relative intensity noise (RIN), mode structures of induced Raman fibre lasers, and so on. It was found for the first time that RFL based amplification techniques could be divided into three categories in terms of the fibre laser regime, which were Fabry-Perot fibre laser with two FBGs, weak Fabry-Perot fibre laser with one FBG and very low reflection near the input, and random distributed feedback (DFB) fibre laser with one FBG. It was also found that lowering the reflection near the input could mitigate the RIN of the signal significantly, thanks to the reduced efficiency of the Stokes shift from the FW-propagated pump. In order to evaluate the transmission performance, different RFL based amplifiers were evaluated and optimised in long-haul coherent transmission systems. The results showed that Fabry-Perot fibre laser based amplifier with two FBGs gave >4.15 dB Q factor penalty using symmetrical bidirectional pumping, as the RIN of the signal was increased significantly. However, random distributed feedback fibre laser based amplifier with one FBG could mitigate the RIN of the signal, which enabled the use of bidirectional second order pumping and consequently give the best transmission performance up to 7915 km. Furthermore, using random DFB fibre laser based amplifier was proved to be effective to combat the nonlinear impairment, and the maximum reach was enhanced by >28% in mid-link single/dual band optical phase conjugator (OPC) transmission systems. In addition, unrepeatered transmission over >350 km fibre length using RFL based amplification technique were presented experimentally using DP-QPSK and DP-16QAM transmitter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively.