64 resultados para Self-etching adhesive systems
Resumo:
Requirements-aware systems address the need to reason about uncertainty at runtime to support adaptation decisions, by representing quality of services (QoS) requirements for service-based systems (SBS) with precise values in run-time queryable model specification. However, current approaches do not support updating of the specification to reflect changes in the service market, like newly available services or improved QoS of existing ones. Thus, even if the specification models reflect design-time acceptable requirements they may become obsolete and miss opportunities for system improvement by self-adaptation. This articles proposes to distinguish "abstract" and "concrete" specification models: the former consists of linguistic variables (e.g. "fast") agreed upon at design time, and the latter consists of precise numeric values (e.g. "2ms") that are dynamically calculated at run-time, thus incorporating up-to-date QoS information. If and when freshly calculated concrete specifications are not satisfied anymore by the current service configuration, an adaptation is triggered. The approach was validated using four simulated SBS that use services from a previously published, real-world dataset; in all cases, the system was able to detect unsatisfied requirements at run-time and trigger suitable adaptations. Ongoing work focuses on policies to determine recalculation of specifications. This approach will allow engineers to build SBS that can be protected against market-caused obsolescence of their requirements specifications. © 2012 IEEE.
Resumo:
A self-adaptive system adjusts its configuration to tolerate changes in its operating environment. To date, requirements modeling methodologies for self-adaptive systems have necessitated analysis of all potential system configurations, and the circumstances under which each is to be adopted. We argue that, by explicitly capturing and modelling uncertainty in the operating environment, and by verifying and analysing this model at runtime, it is possible for a system to adapt to tolerate some conditions that were not fully considered at design time. We showcase in this paper our tools and research results. © 2012 IEEE.
Resumo:
We present a novel market-based method, inspired by retail markets, for resource allocation in fully decentralised systems where agents are self-interested. Our market mechanism requires no coordinating node or complex negotiation. The stability of outcome allocations, those at equilibrium, is analysed and compared for three buyer behaviour models. In order to capture the interaction between self-interested agents, we propose the use of competitive coevolution. Our approach is both highly scalable and may be tuned to achieve specified outcome resource allocations. We demonstrate the behaviour of our approach in simulation, where evolutionary market agents act on behalf of service providing nodes to adaptively price their resources over time, in response to market conditions. We show that this leads the system to the predicted outcome resource allocation. Furthermore, the system remains stable in the presence of small changes in price, when buyers' decision functions degrade gracefully. © 2009 The Author(s).
Resumo:
Artificial Immune Systems are well suited to the problem of using a profile representation of an individual’s or a group’s interests to evaluate documents. Nootropia is a user profiling model that exhibits similarities to models of the immune system that have been developed in the context of autopoietic theory. It uses a self-organising term network that can represent a user’s multiple interests and can adapt to both short-term variations and substantial changes in them. This allows Nootropia to drift, constantly following changes in the user’s multiple interests, and, thus, to become structurally coupled to the user.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
Background and Objective: Medication non-compliance is a considerable obstacle in achievinga therapeutic goal, whichcan result in poorerhealthcare outcomes, increased expenditure, wastage and potential for medication resistance. The UK Government’s Audit Commission’s publication ‘A Spoonful of Sugar’1 addresses these issues and promotes self-medication systems as a possible solution. The self-medication system within the Liver Transplant Unit (LTU) was implemented to induct patients onto new post- transplantation medication regimes ready for discharge. The system involves initial consultations with both the Liver Transplant Pharmacist and Trans- plant Co-ordinator, supported with additional advice as and when necessary. Design: Following ethical approval, evaluation of the self-medication sys- tem for liver transplant patients was conducted between January and March 2004 via two methods: audit and structured post-transplantation interview. The audit enabled any discrepancies between current Hospital guidelines and Liver Transplant Unit (LTU) practices to be highlighted. Patient interviews generated a retrospective insight into patient acceptance of the self-medication system. Setting: LTU, Queen Elizabeth Hospital, Birmingham, England. Main Outcome Measures: LTU compliance with Hospital self-medication guidelines and patient insight into self-medication system. Results: A total of seven patients were audited. Findings illustrated that self- medication by transplant patients is a complex process which was not fully addressed by current Hospital self-medication guidelines. Twenty-three patients were interviewed, showing an overwhelming positive attitude to- wards participating in their own care and a high level of understanding towards their individual medication regimes. Following a drugs counselling session, 100% of patients understood why they were taking their medica- tion, and their doses, 95% understood how to take their medication and 85% were aware of potential side effects. Conclusions: From this pilot evaluation it can be stated that the LTU self-medication system is appreciated by patients and assists them in fully understanding their medication regimes. There appear to be no major defects in the system. However areas such as communication barriers and on-going internet education were illustrated as areas for possible future investigation. References: 1. Audit Commission. A spoonful of sugar – medicines management in NHS hospitals. London: Audit Commission; 2001.
Resumo:
Research has looked at single rather than a configuration of human resource management (HRM) practices to influence creativity so it is not yet clear how these practices synergistically facilitate creativity and organisational performance. I address this significant but unanswered question in a three-part study. In Study 1, I develop a high performance work system (HPWS) for creativity scale. I use Study 2 sample to test the validity of the new scale. In Study 3, I test a multilevel model of the intervening processes through which branch HPWS for creativity influences creativity and branch performance. Specifically, at the branch level, I draw on social context theory and hypothesise that branch HPWS for creativity relates to climate for creativity which, in turn, leads to creativity, and ultimately, to profit. Furthermore, I hypothesise environmental dynamism as a boundary condition of the creativity-profit relationship. At the individual level, I hypothesise a cross-level effect of branch HPWS for creativity on employee-perceived HPWS. I draw on self-determination theory and argue that perceived HPWS for creativity relate to need satisfaction and the psychological pathways of intrinsic motivation and creative process engagement to predict creativity. I also hypothesise climate for creativity as a cross-level moderator of the intrinsic motivation-creativity and creative process engagement-creativity relationships. Results of hierarchical linear modeling (HLM) indicate that ten out of the fifteen hypotheses were supported. The findings of this study respond to calls for HPWS to be designed around a strategic focus by developing and providing initial validity evidence of an HPWS for creativity scale. The results reveal the underlying mechanisms through which HPWS for creativity simultaneously influences individual and branch creativity leading to profit. Lastly, results indicate environmental dynamism to be an important boundary condition of the creativity-profit relationship and climate for creativity as a cross-level moderator of the creative process engagement-creativity.
Resumo:
We introduce self-interested evolutionary market agents, which act on behalf of service providers in a large decentralised system, to adaptively price their resources over time. Our agents competitively co-evolve in the live market, driving it towards the Bertrand equilibrium, the non-cooperative Nash equilibrium, at which all sellers charge their reserve price and share the market equally. We demonstrate that this outcome results in even load-balancing between the service providers. Our contribution in this paper is twofold; the use of on-line competitive co-evolution of self-interested service providers to drive a decentralised market towards equilibrium, and a demonstration that load-balancing behaviour emerges under the assumptions we describe. Unlike previous studies on this topic, all our agents are entirely self-interested; no cooperation is assumed. This makes our problem a non-trivial and more realistic one.
Resumo:
This theoretical study shows the technical feasibility of self-powered geothermal desalination of groundwater sources at <100 °C. A general method and framework are developed and then applied to specific case studies. First, the analysis considers an ideal limit to performance based on exergy analysis using generalised idealised assumptions. This thermodynamic limit applies to any type of process technology. Then, the analysis focuses specifically on the Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO), as these are among the most mature and efficient applicable technologies. Important dimensionless parameters are calculated for the ideal case of the self-powered arrangement and semi-ideal case where only essential losses dependent on the RO system configuration are considered. These parameters are used to compare the performance of desalination systems using ORC-RO under ideal, semi-ideal and real assumptions for four case studies relating to geothermal sources located in India, Saudi Arabia, Tunisia and Turkey. The overall system recovery ratio (the key performance measure for the self-powered process) depends strongly on the geothermal source temperature. It can be as high as 91.5% for a hot spring emerging at 96 °C with a salinity of 1830 mg/kg.
Resumo:
This study tested the multi-society generalizability of an eight-syndrome assessment model derived from factor analyses of American adults' self-ratings of 120 behavioral, emotional, and social problems. The Adult Self-Report (ASR; Achenbach and Rescorla 2003) was completed by 17,152 18-59-year-olds in 29 societies. Confirmatory factor analyses tested the fit of self-ratings in each sample to the eight-syndrome model. The primary model fit index (Root Mean Square Error of Approximation) showed good model fit for all samples, while secondary indices showed acceptable to good fit. Only 5 (0.06%) of the 8,598 estimated parameters were outside the admissible parameter space. Confidence intervals indicated that sampling fluctuations could account for the deviant parameters. Results thus supported the tested model in societies differing widely in social, political, and economic systems, languages, ethnicities, religions, and geographical regions. Although other items, societies, and analytic methods might yield different results, the findings indicate that adults in very diverse societies were willing and able to rate themselves on the same standardized set of 120 problem items. Moreover, their self-ratings fit an eight-syndrome model previously derived from self-ratings by American adults. The support for the statistically derived syndrome model is consistent with previous findings for parent, teacher, and self-ratings of 11/2-18-year-olds in many societies. The ASR and its parallel collateral-report instrument, the Adult Behavior Checklist (ABCL), may offer mental health professionals practical tools for the multi-informant assessment of clinical constructs of adult psychopathology that appear to be meaningful across diverse societies. © 2014 Springer Science+Business Media New York.
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
We identify two different forms of diversity present in engineered collective systems, namely heterogeneity (genotypic/phenotypic diversity) and dynamics (temporal diversity). Three qualitatively different case studies are analysed, and it is shown that both forms of diversity can be beneficial in very different problem and application domains. Behavioural diversity is shown to be motivated by input diversity and this observation is used to present recommendations for designers of collective systems.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.