51 resultados para Representation in administrative proceedings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aston University has been working closely with key companies from within the electricity industry for several years, initially in the development and delivery of an employer-led foundation degree programme in electrical power engineering, and more recently, in the development of a progression pathway for foundation degree graduates to achieve a Bachelors-level qualification. The Electrical Power Engineering foundation degree was developed in close consultation with the industry such that the programme is essentially owned by the sector. Programme delivery has required significant shifts away from traditional HE teaching patterns whilst maintaining the quality requirement and without compromise of the academic degree standard. Block teaching (2-week slots), partnership delivery, off-site student support and work-based learning have all presented challenges as we have sought to maximise the student learning experience and to ensure that the graduates are fit-for purpose and "hit the ground running" within a defined career structure for sponsoring companies. This paper will outline the skills challenges facing the sector; describe programme developments and delivery challenges; before articulating some observations and conclusions around programme effectiveness, impact of foundation degree graduates in the workplace and the significance of the close working relationship with key sponsoring companies. Copyright © 2012, September.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile technologies have yet to be widely adopted by the Architectural, Engineering, and Construction (AEC) industry despite being one of the major growth areas in computing in recent years. This lack of uptake in the AEC industry is likely due, in large part, to the combination of small screen size and inappropriate interaction demands of current mobile technologies. This paper discusses the scope for multimodal interaction design with a specific focus on speech-based interaction to enhance the suitability of mobile technology use within the AEC industry by broadening the field data input capabilities of such technologies. To investigate the appropriateness of using multimodal technology for field data collection in the AEC industry, we have developed a prototype Multimodal Field Data Entry (MFDE) application. This application, which allows concrete testing technicians to record quality control data in the field, has been designed to support two different modalities of data input speech-based data entry and stylus-based data entry. To compare the effectiveness or usability of, and user preference for, the different input options, we have designed a comprehensive lab-based evaluation of the application. To appropriately reflect the anticipated context of use within the study design, careful consideration had to be given to the key elements of a construction site that would potentially influence a test technician's ability to use the input techniques. These considerations and the resultant evaluation design are discussed in detail in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes.