50 resultados para Radiality constraints in distribution systems
Resumo:
In this paper a new approach to the resource allocation and scheduling mechanism that reflects the effect of user's Quality of Experience is presented. The proposed scheduling algorithm is examined in the context of 3GPP Long Term Evolution (LTE) system. Pause Intensity (PI) as an objective and no-reference quality assessment metric is employed to represent user's satisfaction in the scheduler of eNodeB. PI is in fact a measurement of discontinuity in the service. The performance of the scheduling method proposed is compared with two extreme cases: maxCI and Round Robin scheduling schemes which correspond to the efficiency and fairness oriented mechanisms, respectively. Our work reveals that the proposed method is able to perform between fairness and efficiency requirements, in favor of higher satisfaction for the users to the desired level. © VDE VERLAG GMBH.
Resumo:
Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.
Resumo:
This paper focuses on the move from buyer dominance toward interdependence between buyers and suppliers in a distribution channel. The paper introduces a case study collected through in-depth interviews and participative observations. It examines the relationships between a timber supplier and its customers in the builders' merchants sector. We stress the relevance of considering actions intended to change the power balance, rather than focusing only on trust. The power balance in a dyadic relationship is dynamic, and power positions need to be constantly re-evaluated. An important power resource is information asymmetry, manifested in the supplier's information about: products, regional and local demand, and the usage of the products. For practitioners, we highlight the possibility of exerting a non-coercive power resource, such as information asymmetry, in order to increase the relative power. Furthermore, being open about the power position between a buyer and a seller can foster a more efficient collaboration.
Resumo:
In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.
Resumo:
One of the reasons for using variability in the software product line (SPL) approach (see Apel et al., 2006; Figueiredo et al., 2008; Kastner et al., 2007; Mezini & Ostermann, 2004) is to delay a design decision (Svahnberg et al., 2005). Instead of deciding on what system to develop in advance, with the SPL approach a set of components and a reference architecture are specified and implemented (during domain engineering, see Czarnecki & Eisenecker, 2000) out of which individual systems are composed at a later stage (during application engineering, see Czarnecki & Eisenecker, 2000). By postponing the design decisions in such a manner, it is possible to better fit the resultant system in its intended environment, for instance, to allow selection of the system interaction mode to be made after the customers have purchased particular hardware, such as a PDA vs. a laptop. Such variability is expressed through variation points which are locations in a software-based system where choices are available for defining a specific instance of a system (Svahnberg et al., 2005). Until recently it had sufficed to postpone committing to a specific system instance till before the system runtime. However, in the recent years the use and expectations of software systems in human society has undergone significant changes.Today's software systems need to be always available, highly interactive, and able to continuously adapt according to the varying environment conditions, user characteristics and characteristics of other systems that interact with them. Such systems, called adaptive systems, are expected to be long-lived and able to undertake adaptations with little or no human intervention (Cheng et al., 2009). Therefore, the variability now needs to be present also at system runtime, which leads to the emergence of a new type of system: adaptive systems with dynamic variability.