50 resultados para Photonic crystal fibers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%). It is shown that depressed cladding is a dominating factor in waveguide formation, and mechanical stress has a minor contribution. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present recent results on experimental micro-fabrication and numerical modeling of advanced photonic devices by means of direct writing by femtosecond laser. Transverse inscription geometry was routinely used to inscribe and modify photonic devices based on waveguiding structures. Typically, standard commercially available fibers were used as a template with a pre-fabricated waveguide. Using a direct, point-by-point inscription by infrared femtosecond laser, a range of fiber-based photonic devices was fabricated including Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG). Waveguides with a core of a couple of microns, periodic structures, and couplers have been also fabricated in planar geometry using the same method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present recent results on experimental micro-fabrication and numerical modeling of advanced photonic devices by means of direct writing by femtosecond laser. Transverse inscription geometry was routinely used to inscribe and modify photonic devices based on waveguiding structures. Typically, standard commercially available fibers were used as a template with a pre-fabricated waveguide. Using a direct, point-by-point inscription by infrared femtosecond laser, a range of fiber-based photonic devices was fabricated including Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG). Waveguides with a core of a couple of microns, periodic structures, and couplers have been also fabricated in planar geometry using the same method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.