308 resultados para Optical fiber fabrication


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humidity response of poly(methyl methacrylate) (PMMA)-based optical fiber Bragg gratings (POFBGs) has been studied. The characteristic wavelength of the grating is modulated by water absorption-induced swelling and refractive index change in the fiber. This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber. By pre-straining a grating, one can get rid of this uncertainty and simultaneously improve the POFBG response time. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel surface plasmonic optical fiber sensors have been fabricated using multiple coatings deposited on a lapped section of a single mode fiber. UV laser irradiation processing with a phase mask produces a nano-scaled surface relief grating structure resembling nano-wires. The resulting individual corrugations produced by material compaction are approximately 20 μm long with an average width at half maximum of 100 nm and generate localized surface plasmons. Experimental data are presented that show changes in the spectral characteristics after UV processing, coupled with an overall increase in the sensitivity of the devices to surrounding refractive index. Evidence is presented that there is an optimum UV dosage (48 joules) over which no significant additional optical change is observed. The devices are characterized with regards to change in refractive index, where significantly high spectral sensitivities in the aqueous index regime are found, ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive rigorously the Fokker-Planck equation that governs the statistics of soliton parameters in optical transmission lines in the presence of additive amplifier spontaneous emission. We demonstrate that these statistics are generally non-Gaussian. We present exact marginal probability-density functions for soliton parameters for some cases. A WKB approach is applied to describe the tails of the probability-density functions. © 2005 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications. Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach - the nonlinear inverse synthesis method - for digital signal processing based on encoding the information directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk. The general approach is illustrated with a coherent optical orthogonal frequency division multiplexing transmission format. We show how the strategy based upon the inverse scattering transform method can be geared for the creation of new efficient coding and modulation standards for the nonlinear channel. © Published by the American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first demonstration of a tunable FBG device in POF utilizing thin-film resistive heater deposited on the fiber. A wavelength shift of 2nm, wavelength/power coefficient of -13.4pm/mW and T = 1.7s-1 are achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long period gratings (LPGs) were written into a D-shaped optical fibre, which has an elliptical core with a W-shaped refractive index profile. The LPG's attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15nm between the two orthogonal polarisation states. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature, surrounding refractive index, and directional bending. These LPG devices produced blue and red wavelength shifts of the stop-bands due to bending in different directions. The measured spectral sensitivities to curvatures, d?/dR , ranged from -3.56nm m to +6.51nm m. The results obtained with these LPGs suggest that this type of fibre may be useful as a shape/bend sensor. It was also demonstrated that the neighbouring bands could be used to discriminate between temperature and bending and that overlapping orthogonal polarisation attenuation bands can be used to minimise error associated with polarisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present various approaches to the optimization of optical fiber lines and discuss the ranges of validity of such methods. An effective scheme for upgrading of existing transmission lines using dispersion-management with optimization of the pre- and postcompensating fiber is examined. The theory and numerical methods are illustrated in application to the Upgrade of a specific installed Deutsche Telekom fiber line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel dual complementary output optical fiber transversal filter is realized for DWDM applications. Stable, simultaneous complementary filter responses with flattened passbands and large sidelobe suppressions are achieved with a single-line cascaded Hi-Bi fiber structure.