84 resultados para Microwave communication systems
Resumo:
Multiwavelength all-optical regeneration has the potential to substantially increase both the capacity and scalability of future optical networks. In this paper, we review recent promising developments in this area. First, we recall the basic principles of multichannel regeneration of high bit rate signals in optical communication systems before discussing the current technological approaches. We then describe in detail two fiber-based multichannel 2R regeneration techniques for return-to-zero-on-off keying based on 1) dispersion managed systems and 2) direction and polarization multiplexing. We present results illustrating the levels of performance so far achieved and discuss various practical issues and prospects for further performance enhancement.
Resumo:
We investigate full-field detection-based maximum-likelihood sequence estimation (MLSE) for chromatic dispersion compensation in 10 Gbit/s OOK optical communication systems. Important design criteria are identified to optimize the system performance. It is confirmed that approximately 50% improvement in transmission reach can be achieved compared to conventional direct-detection MLSE at both 4 and 16 states. It is also shown that full-field MLSE is more robust to the noise and the associated noise amplifications in full-field reconstruction, and consequently exhibits better tolerance to nonoptimized system parameters than full-field feedforward equalizer. Experiments over 124 km spans of field-installed single-mode fiber without optical dispersion compensation using full-field MLSE verify the theoretically predicted performance benefits.
Resumo:
We propose to apply a large predispersion (having the same sign as the transmission fiber) to an optical signal before the uncompensated fiber transmission in coherent communication systems. This technique is aimed at simplifica- tion of the following digital signal processing of nonlinear impairments. We derive a model describing pulse propagation in the dispersion-dominated nonlinear fiber channel. In the limit of very strong initial predispersion, the nonlinear propagation equations for each Fourier mode become local and decoupled. This paves the way for new techniques to manage fiber nonlinearity.
Resumo:
Erbium-doped fibre amplifiers (EDFA’s) are a key technology for the design of all optical communication systems and networks. The superiority of EDFAs lies in their negligible intermodulation distortion across high speed multichannel signals, low intrinsic losses, slow gain dynamics, and gain in a wide range of optical wavelengths. Due to long lifetime in excited states, EDFAs do not oppose the effect of cross-gain saturation. The time characteristics of the gain saturation and recovery effects are between a few hundred microseconds and 10 milliseconds. However, in wavelength division multiplexed (WDM) optical networks with EDFAs, the number of channels traversing an EDFA can change due to the faulty link of the network or the system reconfiguration. It has been found that, due to the variation in channel number in the EDFAs chain, the output system powers of surviving channels can change in a very short time. Thus, the power transient is one of the problems deteriorating system performance. In this thesis, the transient phenomenon in wavelength routed WDM optical networks with EDFA chains was investigated. The task was performed using different input signal powers for circuit switched networks. A simulator for the EDFA gain dynamicmodel was developed to compute the magnitude and speed of the power transients in the non-self-saturated EDFA both single and chained. The dynamic model of the self-saturated EDFAs chain and its simulator were also developed to compute the magnitude and speed of the power transients and the Optical signal-to-noise ratio (OSNR). We found that the OSNR transient magnitude and speed are a function of both the output power transient and the number of EDFAs in the chain. The OSNR value predicts the level of the quality of service in the related network. It was found that the power transients for both self-saturated and non-self-saturated EDFAs are close in magnitude in the case of gain saturated EDFAs networks. Moreover, the cross-gain saturation also degrades the performance of the packet switching networks due to varying traffic characteristics. The magnitude and the speed of output power transients increase along the EDFAs chain. An investigation was done on the asynchronous transfer mode (ATM) or the WDM Internet protocol (WDM-IP) traffic networks using different traffic patterns based on the Pareto and Poisson distribution. The simulator is used to examine the amount and speed of the power transients in Pareto and Poisson distributed traffic at different bit rates, with specific focus on 2.5 Gb/s. It was found from numerical and statistical analysis that the power swing increases if the time interval of theburst-ON/burst-OFF is long in the packet bursts. This is because the gain dynamics is fast during strong signal pulse or with long duration pulses, which is due to the stimulatedemission avalanche depletion of the excited ions. Thus, an increase in output power levelcould lead to error burst which affects the system performance.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
Multiwavelength fiber laser is a perfect light source for future wavelength-division-multiplexing optical communication systems. A multiwavelength fiber laser based on nonlinear polarization rotation with up to 18 wavelengths has been proposed and demonstrated. The intensity- and wavelength-dependent loss induced by nonlinear polarization rotation effect is used to alleviate the mode competition in the homogeneous broadening gain medium of erbium-doped fiber. Instead of traditional filters, a polarization-maintaining fiber is inserted into the laser cavity, with which the polarization-dependent isolator composes an equivalent Lyot birefringent fiber filter. The in-line birefringence fiber filter is used to simplify the laser configuration, which benefits systematic integration. The effect of the 980 nm pump power on the multiwavelength generation is investigated. It is shown that the pump power contributes a lot to the evenness of the multiwavelength spectra due to the intensity dependence of nonlinear polarization rotation effect.
Resumo:
Link adaptation (LA) plays an important role in adapting an IEEE 802.11 network to wireless link conditions and maximizing its capacity. However, there is a lack of theoretic analysis of IEEE 802.11 LA algorithms. In this article, we propose a Markov chain model for an 802.11 LA algorithm (ONOE algorithm), aiming to identify the problems and finding the space of improvement for LA algorithms. We systematically model the impacts of frame corruption and collision on IEEE 802.11 network performance. The proposed analytic model was verified by computer simulations. With the analytic model, it can be observed that ONOE algorithm performance is highly dependent on the initial bit rate and parameter configurations. The algorithm may perform badly even under light channel congestion, and thus, ONOE algorithm parameters should be configured carefully to ensure a satisfactory system performance. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses, and on the applications of advanced pulse waveforms in all-optical signal processing. Among other topics, we will discuss ultrahigh repetition-rate pulse sources, the generation of parabolic-shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © 2012 IEEE.
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities. © 1995 Academic Press. All rights reserved.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.
Resumo:
Multiwavelength fiber laser is a perfect light source for future wavelength-division-multiplexing optical communication systems. A multiwavelength fiber laser based on nonlinear polarization rotation with up to 18 wavelengths has been proposed and demonstrated. The intensity- and wavelength-dependent loss induced by nonlinear polarization rotation effect is used to alleviate the mode competition in the homogeneous broadening gain medium of erbium-doped fiber. Instead of traditional filters, a polarization-maintaining fiber is inserted into the laser cavity, with which the polarization-dependent isolator composes an equivalent Lyot birefringent fiber filter. The in-line birefringence fiber filter is used to simplify the laser configuration, which benefits systematic integration. The effect of the 980 nm pump power on the multiwavelength generation is investigated. It is shown that the pump power contributes a lot to the evenness of the multiwavelength spectra due to the intensity dependence of nonlinear polarization rotation effect.