111 resultados para Fiber Optic Sensors in Quality evaluation
Resumo:
Formulation of solid dispersions is one of the effective methods to increase the rate of solubilization and dissolution of poorly soluble drugs. Solid dispersions of chloramphenicol (CP) and sulphamethoxazole (SX) as model drugs were prepared by melt fusion method using polyethylene glycol 8000 (PEG 8000) as an inert carrier. The dissolution rate of CP and SX were rapid from solid dispersions with low drug and high polymer content. Characterization was performed using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR analysis for the solid dispersions of CP and SX showed that there was no interaction between PEG 8000 and the drugs. Hyper-DSC studies revealed that CP and SX were converted into an amorphous form when formulated as solid dispersion in PEG 8000. Mathematical analysis of the release kinetics demonstrated that drug release from the various formulations followed different mechanisms. Permeability studies demonstrated that both CP and SX when formulated as solid dispersions showed enhanced permeability across Caco-2 cells and CP can be classified as well-absorbed compound when formulated as solid dispersions. © 2013 Informa Healthcare USA, Inc.
Resumo:
Poor water solubility leads to low dissolution rate and consequently, it can limit bioavailability. Solid dispersions, where the drug is dispersed into an inert, hydrophilic polymer matrix can enhance drug dissolution. Solid dispersions were prepared using phenacetin and phenylbutazone as model drugs with polyethylene glycol (PEG) 8000 (carrier), by melt fusion method. Phenacetin and phenylbutazone displayed an increase in the dissolution rate when formulated as solid dispersions as compared with their physical mixture and drug alone counterparts. Characterisation of the solid dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). DSC studies revealed that drugs were present in the amorphous form within the solid dispersions. FTIR spectra for the solid dispersions of drugs suggested that there was a lack of interaction between PEG 8000 and the drug. However, the physical mixture of phenacetin with PEG 8000 indicated the formation of hydrogen bond between phenacetin and the carrier. Permeability of phenacetin and phenylbutazone was higher for solid dispersions as compared with that of drug alone across Caco-2 cell monolayers. Permeability studies have shown that both phenacetin and phenylbutazone, and their solid dispersions can be categorised as well-absorbed compounds.
Resumo:
The subject of investigation of the present research is the use of smart hydrogels with fibre optic sensor technology. The aim was to develop a costeffective sensor platform for the detection of water in hydrocarbon media, and of dissolved inorganic analytes, namely potassium, calcium and aluminium. The fibre optic sensors in this work depend upon the use of hydrogels to either entrap chemotropic agents or to respond to external environmental changes, by changing their inherent properties, such as refractive index (RI). A review of current fibre optic technology for sensing outlined that the main principles utilised are either the measurement of signal loss or a change in wavelength of the light transmitted through the system. The signal loss principle relies on changing the conditions required for total internal reflection to occur. Hydrogels are cross-linked polymer networks that swell but do not dissolve in aqueous environments. Smart hydrogels are synthetic materials that exhibit additional properties to those inherent in their structure. In order to control the non-inherent properties, the hydrogels were fabricated with the addition of chemotropic agents. For the detection of water, hydrogels of low refractive index were synthesized using fluorinated monomers. Sulfonated monomers were used for their extreme hydrophilicity as a means of water sensing through an RI change. To enhance the sensing capability of the hydrogel, chemotropic agents, such as pH indicators and cobalt salts, were used. The system comprises of the smart hydrogel coated onto an exposed section of the fibre optic core, connected to the interrogation system measuring the difference in the signal. Information obtained was analysed using a purpose designed software. The developed sensor platform showed that an increase in the target species caused an increase in the signal lost from the sensor system, allowing for a detection of the target species. The system has potential applications in areas such as clinical point of care, water detection in fuels and the detection of dissolved ions in the water industry.
Resumo:
Fibre Bragg gratings have been UV inscribed in multimode microstructured polymer optical fibre in both the 1550nm and 800nm spectral regions. Thermally annealing the fibre at 80°C has been shown to shrink the fibre length and as a result a permanent negative Bragg wavelength shift is observed. The blue shift can be tuned between 0-16nm in the 1550nm spectral region and 0-6nm in the 800nm spectral region, depending on the duration the heat is applied before a saturation level is reached and the fibre stops shrinking in the region of 2 hours. Exploiting this, wavelength division multiplexed sensors have been UV inscribed in both the 1550nm and 800nm regions using a single phase mask for each wavelength region. The 800nm sensor takes advantage of the lower attenuation of poly (methyl methacrylate) of 2dB/m compared to 100dB/m at 1550nm.
Resumo:
We propose and analyze a flat-top pulse generator based on a fiber Bragg grating (FBG) in transmission. As is shown in the examples, a uniform period FBG properly designed can exhibit a spectral response in transmission close to sinc function (in amplitude and phase) in a certain bandwidth, because of the logarithm Hilbert transform relations, which can be used to reshape a Gaussian-like input pulse into a flat-top pulse.
Resumo:
We propose and analyze a first-order optical differentiator based on a fiber Bragg grating (FBG) in transmission. It is shown in the examples that a simple uniform-period FBG in a very strong coupling regime (maximum reflectivity very close to 100%) can perform close to ideal temporal differentiation of the complex envelope of an arbitrary-input optical signal.
Resumo:
Fibre Bragg Grating (FBG) array sensors have been successfully embedded in aluminium alloy matrix by ultrasonic consolidation (UC) technique. The temperature and loading responses of the embedded FBG arrays have been systematically characterised. The embedded grating sensors exhibit an average temperature sensitivity of ~36pm/°C, which is three times higher than that of normal FBGs, and a loading responsivity of ~0.1nm/kg within the dynamic range from 0kg to 3kg. This initial experiment clearly demonstrates that FBG array sensors can be embedded in metal matrix together with other passive and active fibres to fabricate smart materials to monitor the operation and health of engineering structures.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
Reported are experimental results from investigations of the sensing properties of long-period gratings (LPGs) recorded in two different geometries of photonic crystal fibre (PCF): a large-mode area PCF and an endlessly single mode PCF. The LPGs have been characterised for their sensitivity to temperature, bending, surrounding index and strain. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting useful strain sensitivities. Strong directional bend sensitivity is shown by one PCF whilst the other shows good non-directional bend sensitivity. The fibres exhibit differing sensitivities to surrounding refractive index. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the results of an experimental study aimed at improving the performance of actively Q-switched fiber lasers. Unlike generic design schemes employing photonic crystal fibers, largemodal diameter fibers or double-clad fibers, we demonstrate a high-power, actively Q-switched laser based on standard com- munication erbium doped fibers with peak irradiance beyond the state-of-the-art at 3.1 GW/cm2 . The laser had 2.2 kW peak power, 15.5 ns pulse duration and 36.8 µJ pulse energy. We have also investigated the dynamics of pulse generation and have success- fully suppressed pulse instabilities caused by backscattered laser emission reaching the pump laser diodes.