57 resultados para Fatigue crack growth


Relevância:

90.00% 90.00%

Publicador:

Resumo:

2XXX and 7XXX series aluminium alloys have been the accepted materials for airframe construction for many decades. However, only minor improvements in properties have been possible by the development of these alloys since the early 1970's. The constant need to reduce weight in aircraft has therefore led to a resurgence in the research for higher performance aluminium alloys. The reason for this investigation was to evaluate possible alternatives for the existing conventional aluminium alloy 2014 for aircraft wheel applications. Three new technologies in alloy development were considered: a metal matrix composite, an aluminium-lithium alloy and a powder metallurgical alloy. The basic mechanical properties of these advanced materials have already been established to an extent, but their fatigue behaviour has yet to be fully understood. The purpose of this work was to investigate the fatigue properties of the materials concerned, in both air and an aerated 3.5% NaCl solution, and compare these properties to 2014-T6. As well as the basic mechanical properties, fatigue crack propagation data is presented for all of the materials concerned. Additionally, fatigue crack initiation data is presented for the aluminium-lithium alloy and 2014. The D.C. electrical potential method was used to monitor crack growth. Of the materials investigated, the most promising was the aluminium-lithium alloy. However, short transverse properties need to be increased and the commercial cost of the material needs to be decreased before it can be considered as a direct replacement for 2014 for aircraft structural applications. It was considered that the cost of the powder metallurgical alloy would limit its further use. The metal matrix composite material proved to be unsuitable for most ambient temperature applications

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interfaces in conventional monolithic alloys exert an important influence on fatigue and fracture behavior. In discontinuously reinforced metal matrix composites (MMCs), the role of interface is even more dominant. The interfacial is higher in MMCs and the interfaces are generally of high energy and chemically unstable. This paper reviews the factors which can affect interfacial strength in discontinuously reinforced MMCs, and the ways in which interfacial strength can be controlled. The effects of interfacial strength on fatigue crack propagation and fracture behavior are then illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The results of fracture toughness tests on a high strength steel 300m are presented. These results show (i) that in the presence of through-thickness cracks the toughness remains constant down to (a/W)-ratios as low as 0.01 and failure loads up to 0.85σy, and (ii) that the material is more resistant to crack growth when the cracks are semi-elliptical in shape, giving a toughness value which is almost 25 per cent higher than the through-thickness one. Three independent stress analyses are used to obtain stress intensity values for the semi-elliptical cracks and additional confirmation of the increase in toughness comes from stretch zone measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fatigue-crack propagation and threshold behaviour of a C-Mn steel containing boron has been investigated at a range of strength levels suitable for mining chain applications. The heat-treatment variables examined include two austenitizing temperatures (900 degree C and 1250 degree C) and a range of tempering treatments from the as-quenched condition to tempering at 400 degree C. In mining applications the haulage chains undergo a 'calibration' process which has the effect of imposing a tensile prestrain on the chain links before they go into service. Prestrain is shown to reduce threshold values in these steels and this behaviour is related to its effects on the residual stress distribution in the test specimens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The long crack threshold behaviour of polycrystalline Udimet 720 has been investigated. Faceted crack growth is seen near threshold when the monotonic crack tip plastic zone is contained within the coarsest grain size. At very high load ratios R (=P min/P max) it is possiblefor the monotonic crack tip plastic zone to exceed the coarsest grain size throughout the entire crack growth regime and non1aceted structure insensitive crack growth is then seen down to threshold. Intrinsic threshold values were obtained for non1aceted and faceted crack growth using a constant K max, increasing K min, computer controlled load shedding technique (K is stress intensity factor). Very high R values are obtained at threshold using this technique (0.75-0.95), eliminating closure effects, so the intrinsic resistance of the material to crack propagation is reflected in these values. The intrinsic non1aceted threshold value ÎK th is lower (2.3 MN m -3/2) than the intrinsicfaceted ÎK th value (4.8 MN m -3/2). This is thought to reflect not only the effect of crack branching and deflection (in the faceted case) on the crack driving force, but also the inherent difference in resistance of the material to the two different crack propagation micromechanisms. © 1993 The Institute of Materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study developed a reliable and repeatable methodology to evaluate the fracture properties of asphalt mixtures with an overlay test (OT). In the proposed methodology, first, a two-step OT protocol was used to characterize the undamaged and damaged behaviors of asphalt mixtures. Second, a new methodology combining the mechanical analysis of viscoelastic force equilibrium in the OT specimen and finite element simulations was used to determine the undamaged properties and crack growth function of asphalt mixtures. Third, a modified Paris's law replacing the stress intensity factor by the pseudo J-integral was employed to characterize the fracture behavior of asphalt mixtures. Theoretical equations were derived to calculate the parameters A and n (defined as the fracture properties) in the modified Paris's law. The study used a detailed example to calculate A and n from the OT data. The proposed methodology was successfully applied to evaluate the impact of warm-mix asphalt (WMA) technologies on fracture properties. The results of the tested specimens showed that Evotherm WMA technology slightly improved the cracking resistance of asphalt mixtures, while foaming WMA technology provided comparable fracture properties. In addition, the study found that A decreased with the increase in n in general. A linear relationship between 2log(A) and n was established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulsating; tension fatigue tests have been carried out on edge notched specimens of a mild steel. An electrical potential drop technique was used to determine the number of cycles taken to initiate cracks and the rate at which the cracks grew across the specimen. The results could be described by the range of stress intensity factor, which for crack initiation was modified to take account of the notch root radius. Analysis of elastic stress distributions at cracks and notches and models of plasticity at crack tips are used to discuss the results. Limited evidence in the literature indicates that the fracture mechanics approach may provide a general description of crack initiation and growth in notched specimens, and a simple graphical method of calculating fatigue lives is described. The results are used to illustrate the effects of specimen size and geometry on the fatigue life of notched specimens. The relevance of the work to the assessment of the significance of defects in welds is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of brittle coating precracking on the fatigue behavior of a high-activity aluminide-coated single-crystal nickel-base superalloy has been studied using hollow cylindrical specimens at test temperatures of 600 °C, 800 °C, and 1000 °C. Three types of precrack were studied: narrow precracks formed at room temperature, wide precracks formed at room temperature, and narrow precracks formed at elevated temperature. The effect of precracking on fatigue life at 600 °C was found to depend strongly on the type of precrack. No failure was observed for specimens with narrow room-temperature precracks because of crack arrest via an oxidation-induced crack closure mechanism, while the behavior of wide precracks and precracks formed at elevated temperature mirrored the non-precracked behavior. Crack retardation also occurred for narrow room-temperature precracks tested at 800 °C - in this case, fatigue cracks leading to failure initiated in a layer of recrystallized grains on the inside surface of the specimen. A significant reduction in fatigue life at 800 °C relative to non-precracked specimens was observed for wide precracks and elevated temperature precracks. The presence of precracks bypassed the initiation and growth of coating fatigue cracks necessary for failure in non-precracked material. No effect of precracking was observed at 1000 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some aspects of fatigue failure in rubbers have been examined. Scanning electron micrographs of the surface exposed by the failure confirm the incremental, crack-propagation nature, of the fatigue process. Many other features of the failure surface have been identified and related to this process. The complicating effect of a reinforcing filler has also been investigated. The fatigue resistance of rubber test-pieces deformed in simple tension was measured as a function of frequency and temperature. This showed that an increase in frequency was equivalent to a decrease in temperature; for an amorphous unfilled rubber the time and temperature effects of crystallisation and fillers on the validity of this transformation is considered. This transformation indicates that hysteresis plays an important part in the fatigue process. Torsional pendulum measurements were used to demonstrate the dependence of the fatigue life on the mechanical damping. An apparatus was developed to measure the hysteresial energy loss directly at deformations, rates of deformation and temperatures consistent with a typical fatigue test. Measurements made with this apparatus are compared with fatigue values and a quantitative relationship is suggested describing fatigue, in terms of the energy lost per unit energy input in a cycle of a fatigue test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crack initiation was studied for asphalt mixtures under external compressive loads. High tensile localized stresses e direction of the external loads. A quantitative crack initiation criterion the edges of compressed air voids lead to the growth of wing cracks in thon was derived using pseudostrain energy balance principle. Bond energy is determined and it increases with aging and loading rate while decreases with temperature. Cohesive and adhesive cracking occur simultaneously and a method was proposed to determine the individual percentage. The crack initiation criterion is simplified and validated through comparing the predicted and measured compressive strength of the asphalt mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanics-based analysis framework predicts top-down fatigue cracking initiation time in asphalt concrete pavements by utilising fracture mechanics and mixture morphology-based property. To reduce the level of complexity involved, traffic data were characterised and incorporated into the framework using the equivalent single axle load (ESAL) approach. There is a concern that this kind of simplistic traffic characterisation might result in erroneous performance predictions and pavement structural designs. This paper integrates axle load spectra and other traffic characterisation parameters into the mechanics-based analysis framework and studies the impact these traffic characterisation parameters have on predicted fatigue cracking performance. The traffic characterisation inputs studied are traffic growth rate, axle load spectra, lateral wheel wander and volume adjustment factors. For this purpose, a traffic integration approach which incorporates Monte Carlo simulation and representative traffic characterisation inputs was developed. The significance of these traffic characterisation parameters was established by evaluating a number of field pavement sections. It is evident from the results that all the traffic characterisation parameters except truck wheel wander have been observed to have significant influence on predicted top-down fatigue cracking performance.