52 resultados para FECAL DEPOSITS HYRACEUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size frequency distributions of discrete β-amyloid (Aβ) deposits were studied in single sections of the temporal lobe from patients with Alzheimer's disease. The size distributions were unimodal and positively skewed. In 18/25 (72%) tissues examined, a log normal distribution was a good fit to the data. This suggests that the abundances of deposit sizes are distributed randomly on a log scale about a mean value. Three hypotheses were proposed to account for the data: (1) sectioning in a single plane, (2) growth and disappearance of Aβ deposits, and (3) the origin of Aβ deposits from clusters of neuronal cell bodies. Size distributions obtained by serial reconstruction through the tissue were similar to those observed in single sections, which would not support the first hypothesis. The log normal distribution of Aβ deposit size suggests a model in which the rate of growth of a deposit is proportional to its volume. However, mean deposit size and the ratio of large to small deposits were not positively correlated with patient age or disease duration. The frequency distribution of Aβ deposits which were closely associated with 0, 1, 2, 3, or more neuronal cell bodies deviated significantly from a log normal distribution, which would not support the neuronal origin hypothesis. On the basis of the present data, growth and resolution of Aβ deposits would appear to be the most likely explanation for the log normal size distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The factors determining the size of individual β-amyloid (A,8) deposits and their size frequency distribution in tissue from Alzheimer's disease (AD) patients have not been established. In 23/25 cortical tissues from 10 AD patients, the frequency of Aβ deposits declined exponentially with increasing size. In a random sample of 400 Aβ deposits, 88% were closely associated with one or more neuronal cell bodies. The frequency distribution of (Aβ) deposits which were associated with 0,1,2,...,n neuronal cell bodies deviated significantly from a Poisson distribution, suggesting a degree of clustering of the neuronal cell bodies. In addition, the frequency of Aβ deposits declined exponentially as the number of associated neuronal cell bodies increased. Aβ deposit area was positively correlated with the frequency of associated neuronal cell bodies, the degree of correlation being greater for pyramidal cells than smaller neurons. These data suggested: (1) the number of closely adjacent neuronal cell bodies which simultaneously secrete Aβ was an important factor determining the size of an Aβ deposit and (2) the exponential decline in larger Aβ deposits reflects the low probability that larger numbers of adjacent neurons will secrete Aβ simultaneously to form a deposit. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of ß-amyloid (Aß ), a 'signature' pathological lesion of Alzheimer's disease (AD), is also characteristic of Down's syndrome (DS), and has been observed in dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). To determine whether the growth of Aß deposits was similar in these disorders, the size frequency distributions of the diffuse ('pre-amyloid'), primitive ('neuritic'), and classic ('dense-cored') A ß deposits were compared in AD, DS, DLB, and CBD. All size distributions had essentially the same shape, i.e., they were unimodal and positively skewed. Mean size of Aß deposits, however, varied between disorders. Mean diameters of the diffuse, primitive, and classic deposits were greatest in DS, DS and CBD, and DS, respectively, while the smallest deposits, on average, were recorded in DLB. Although the shape of the frequency distributions was approximately log-normal, the model underestimated the frequency of smaller deposits and overestimated the frequency of larger deposits in all disorders. A 'power-law' model fitted the size distributions of the primitive deposits in AD, DS, and DLB, and the diffuse deposits in AD. The data suggest: (1) similarities in size distributions of Aß deposits among disorders, (2) growth of deposits varies with subtype and disorder, (3) different factors are involved in the growth of the diffuse/primitive and classic deposits, and (4) log-normal and power-law models do not completely account for the size frequency distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glia may be important in the pathology of variant Creutzfeldt-Jakob disease (vCJD) in several ways: (1) glial cells could be involved in the formation of prion protein (PrPsc) deposits, (2) PrPsc deposits could stimulate the production of astrocytes and microglia, (3) PrPsc deposits could damage adjacent glial cells, and (4) glial cells could remove PrPsc from the brain. To investigate the significance of glial cells in vCJD, the relationships between PrPsc deposits and their associated glia, together with neurons and blood vessels, was studied in six cases of vCJD. Multicentric PrPsc deposits were the largest and least frequent type of deposit observed and were more commonly associated with glial cells, neuronal perikarya, and blood vessels than the more common diffuse and florid PrPsc deposits. Diffuse PrPsc deposits were more frequently associated with glial cells and neurons than the florid deposits. The ratio of astrocytes to oligodendrocytes adjacent to PrPsc deposits was similar to normal brain but the ratio of astrocytes and oligodendrocytes to microglia was less than in normal brain. The intensity of immunolabelling of multicentric PrPsc deposits was positively correlated with the presence of associated vacuoles and negatively correlated with the frequency of microglia. The patterns of correlation between deposit morphology and associated glial cells and neurons were similar for the diffuse and florid type PrPsc deposits. Deposit size was most consistently correlated with the number of associated neurons and vacuoles. The data suggest in vCJD: (1) no evidence that glia were necessary for the formation of PrPsc deposits, (2) an increase in microglia which may be an attempt to remove PrPsc from the bain, and (3) PrPsc deposits could affect adjacent astrocytes and damage the blood brain barrier (BBB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two morphological types of prion protein (PrPsc) deposit occur in the cerebral cortex of cases of variant Creutzfeldt-Jakob disease (vCJD), viz., diffuse and florid deposits. The objective of this study was to determine whether diffuse-type PrPsc deposits in areas of the cerebral cortex in six cases of the variant form of CJD (vCJD) were spatially correlated with neurons and whether diffuse deposit size was related to the number of adjacent neurons contributing PrPsc. In cortical gyri, density of surviving neurons was 5.38-12.15 per 50 × 200 µm sample field, neurons being distributed randomly, regularly or were clustered relative to the pia mater. Density of neurons embedded within diffuse deposits, however, was three to eight times their overall density in the section. In addition, diffuse deposit area was positively correlated with the number of embedded neurons. The frequency distribution of diffuse deposits with 0, 1, 2, 3, …, n, embedded neurons did not deviate from a Poisson distribution. These results suggest: (1) diffuse deposits in vCJD develop in situ as a result of the formation of PrPsc in relation to clusters of neurons, (2) size of a diffuse deposit is determined by the number of adjacent neurons which develop PrPsc, and (3) the probability that PrPsc is formed in relation to one neuron is independent of that of its neighbour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether genetic factors influence frontal lobe degeneration in Alzheimer's disease (AD), the laminar distributions of diffuse, primitive, and classic β-amyloid (Aβ) peptide deposits were compared in early-onset familial AD (EO-FAD) linked to mutations of the amyloid precursor protein (APP) or presenilin 1 (PSEN1) gene, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The influence of apolipoprotein E (Apo E) genotype on laminar distribution was also studied. In the majority of FAD and SAD cases, maximum density of the diffuse and primitive Aβ deposits occurred in the upper cortical layers, whereas the distribution of the classic Aβ deposits was more variable, either occurring in the lower layers, or a double-peaked (bimodal) distribution was present, density peaks occurring in upper and lower layers. The cortical layer at which maximum density of Aβ deposits occurred and maximum density were similar in EO-FAD, LO-FAD and SAD. In addition, there were no significant differences in distributions in cases expressing Apo E ε4 alleles compared with cases expressing the ε2 or ε3 alleles. These results suggest that gene expression had relatively little effect on the laminar distribution of Aβ deposits in the frontal lobe of the AD cases studied. Hence, the pattern of frontal lobe degeneration in AD is similar regardless of whether it is associated with APP and PSEN1, mutation, allelic variation in Apo E, or with SAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial patterns of β-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) were studied in areas of the cerebral cortex in 16 patients with the late-onset, sporadic form of Alzheimer's disease (AD). Diffuse, primitive, and classic Aβ deposits and NFT were aggregated into clusters; the clusters being regularly distributed parallel to the pia mater in many areas. In a significant proportion of regions, the sizes of the regularly distributed clusters approximated to those of the cells of origin of the cortico-cortical projections. The diffuse and primitive Aβ deposits exhibited a similar range of spatial patterns but the classic Aβ deposits occurred less frequently in large clusters >6400m. In addition, the NFT often occurred in larger regularly distributed clusters than the Aβ deposits. The location, size, and distribution of the clusters of Aβ deposits and NFT supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortico-cortical and cortico-hippocampal pathways results in synaptic disconnection and the formation of clusters of NFT and Aβ deposits. © 2011 Nova Science Publishers, Inc.