62 resultados para Expected gain
Resumo:
Link quality-based rate adaptation has been widely used for IEEE 802.11 networks. However, network performance is affected by both link quality and random channel access. Selection of transmit modes for optimal link throughput can cause medium access control (MAC) throughput loss. In this paper, we investigate this issue and propose a generalised cross-layer rate adaptation algorithm. It considers jointly link quality and channel access to optimise network throughput. The objective is to examine the potential benefits by cross-layer design. An efficient analytic model is proposed to evaluate rate adaptation algorithms under dynamic channel and multi-user access environments. The proposed algorithm is compared to link throughput optimisation-based algorithm. It is found rate adaptation by optimising link layer throughput can result in large performance loss, which cannot be compensated by the means of optimising MAC access mechanism alone. Results show cross-layer design can achieve consistent and considerable performance gains of up to 20%. It deserves to be exploited in practical design for IEEE 802.11 networks.
Resumo:
Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks, this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of three models - fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models - and the ability of these models to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance of the proposed method, it is first tested using two established numerical examples and compared with the results obtained from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.
Resumo:
We use the GN-model to assess Nyquist-WDM 100/200Gbit/s PM-QPSK/16QAM signal reach on low loss, large core area fibre using extended range, variable gain hybrid Raman-EDFAs. 5000/1500km transmission is possible over a wide range of amplifier spans. © OSA 2014.
Resumo:
With existing techniques for mode-locking, the bandwidth of ultrashort pulses from a laser is determined primarily by the spectrum of the gain medium. Lasers with self-similar evolution of the pulse in the gain medium can tolerate strong spectral breathing, which is stabilized by nonlinear attraction to the parabolic self-similar pulse. Here we show that this property can be exploited in a fiber laser to eliminate the gain-bandwidth limitation to the pulse duration. Broad (∼200 nm) spectra are generated through passive nonlinear propagation in a normal-dispersion laser, and these can be dechirped to ∼20-fs duration. © 2012 Optical Society of America.
Resumo:
Recently, the concept of a random distributed feedback (DFB) lasing in optical fibers has been demonstrated [1], A number of different random DFB fiber lasers has been demonstrated so far including tunable, multiwalength, cascaded generation, generation in different spectral bands etc [2-7]. All systems are based on standard low-loss germanium doped silica core fibres having relatively low Rayleigh scattering coefficient. Thus, the typical length of random DFB fiber lasers is in the range from several kilometres to tens of kilometres to accumulate enough random feedback. Here we demonstrate for the first time to our knowledge the random DFB fiber laser based on a nitrogen doped silica core (N-doped) fiber. The fiber has several times higher Rayleigh scattering coefficient compared to standard telecommunication fibres. Thus, the generation is achieved in 500 meters long fiber only. © 2013 IEEE.
Resumo:
We show that self-similar evolution in a fiber laser can stabilize spectra broader than the gain bandwidth. 21-fs pulses, which are the shortest from a fiber laser to date, and 200-nm spectra are generated. © OSA 2012.
Resumo:
The year 2011 marked the centenary of the death of one of the founders of British neurology, John Hughlings-Jackson (1835-1911). By common consent he was a great clinician. But he was more. He endeavored to use clinical observations to throw light on one of the great problems of the modern world, the problem of mind. Hughlings-Jackson's daily contact with mentalities warped by neurological disease caused him to ponder deeply the nature of the mind-brain relationship, nowadays often known simply as the "hard problem. " In particular, he saw the danger of conflating mind and brain, a danger that has grown greater with the spectacular growth of neuroscientific knowledge during the last century. Although Hughlings-Jackson's neuroscientific thought is long outdated, his philosophic endeavors remain highly instructive. © 2012 by The Johns Hopkins University Press.
Resumo:
A real-time 5×21.6 Gbit/s WDM electro-optical transceiver is presented. Optical carriers were spaced by 20 GHz and each one transmitted four orthogonally overlapping broadband subcarriers. Only analogue electronics were employed, achieving an unprecedented spectral efficiency in DSP-less SCM links.
Resumo:
For the first time, we demonstrate the possibility to switch between three distinct pulse regimes in a dissipative dispersion-managed (DM) fibre laser by solely controlling the gain saturation energy. Nonlinear Schrödinger equation based simulations show the transitions between hyper-Gaussian similaritons, parabolic similaritons, and dissipative solitons in the same laser cavity. It is also shown that such transitions exist in a wide dispersion range from all-normal to slightly net-normal dispersion. This work demonstrates that besides dispersion and filter managements gain saturation energy can be a new degree of freedom to manage pulse regimes in DM fibre lasers, which offers flexibility in designing ultrafast fibre lasers. Also, the result indicates that in contrast to conservative soliton lasers whose intensity profiles are unique, dissipative DM lasers show diversity in pulse shapes. The findings not only give a better understanding of pulse shaping mechanisms in mode-locked lasers, but also provide insight into dissipative systems.
Resumo:
How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.
Resumo:
We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e., in the absence of any external field or symmetry-breaking perturbations. Through an interplay by the gain and damping effects, the moving soliton may overcome the Peierls-Nabarro barrier, present in the corresponding conservative system, by self-induced time-periodic oscillations of its power (norm) and energy (Hamiltonian), yielding exponential decays to zero with different rates in the forward and backward directions. In certain parameter windows, bistability appears between fast modes with small oscillations and slower, large-oscillation modes. The velocities and the oscillation periods are typically related by lattice commensurability and exhibit period-doubling bifurcations to chaotically "walking" modes under parameter variations. If the model is augmented by intersite Kerr nonlinearity, thereby reducing the Peierls-Nabarro barrier of the conservative system, the existence regime for moving solitons increases considerably, and a richer scenario appears including Hopf bifurcations to incommensurately moving solutions and phase-locking intervals. Stable moving breathers also survive in the presence of weak disorder. © 2014 American Physical Society.
Resumo:
Background. Sports and arts based services for children have positive impacts on their mental and physical health. The charity sector provides such services, often set up in response to local communities expressing a need. The present study maps resilience promoting services provided by children's charities in England. Specifically, the prominence of sports and arts activities, and types of mental health provisions including telephone help-lines, are investigated. Findings. The study was a cross-sectional web-based survey of chief executives, senior mangers, directors and chairs of charities providing services for children under the age of 16. The aims, objectives and activities of participating children's charities and those providing mental health services were described overall. In total 167 chief executives, senior managers, directors and chairs of charities in England agreed to complete the survey. From our sample of charities, arts activities were the most frequently provided services (58/167, 35%), followed by counselling (55/167, 33%) and sports activities (36/167, 22%). Only 13% (22/167) of charities expected their work to contribute to the health legacy of the 2012 London Olympics. Telephone help lines were provided by 16% of the charities that promote mental health. Conclusions. Counselling and arts activities were relatively common. Sports activities were limited despite the evidence base that sport and physical activity are effective interventions for well-being and health gain. Few of the charities we surveyed expected a health legacy from the 2012 London Olympics. © 2010 Bhui et al; licensee BioMed Central Ltd.
Resumo:
We show experimentally a 57nm gain bandwidth for an ultra-long Raman fiber laser based amplification technique using only a single pump wavelength. The enhanced gain bandwidth and gain flatness is investigated for single and multi-cavity designs. ©2010 IEEE.
Resumo:
The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.
Resumo:
Many service firms require frontline service employees (FLEs) to follow routines and standardized operating procedures during the service encounter, to deliver consistently high service standards. However, to create superior, pleasurable experiences for customers, featuring both helpful services and novel approaches to meeting their needs, firms in various sectors also have begun to encourage FLEs to engage in more innovative service behaviors. This study therefore investigates a new and complementary route to customer loyalty, beyond the conventional service-profit chain, that moves through FLEs' innovative service behavior. Drawing on conservation of resources (COR) theory, this study introduces a resource gain spiral at the service encounter, which runs from FLEs' emotional job engagement to innovative service behavior, and then leads to customer delight and finally customer loyalty. In accordance with COR theory, the proposed model also includes factors that might hinder (customer aggression, underemployment) or foster (colleague support, supervisor support) FLEs' resource gain spiral. A multilevel analysis of a large-scale, dyadic data set that contains responses from both FLEs and customers in multiple industries strongly supports the proposed resource gain spiral as a complementary route to customer loyalty. The positive emotional job engagement-innovative service behavior relationship is undermined by customer aggression and underemployment, as hypothesized. Surprisingly though, and contrary to the hypotheses, colleague and supervisor support do not seem to foster FLEs' resource gain spiral. Instead, colleague support weakens the engagement-innovative service behavior relationship, and supervisor support does not affect it. These results indicate that if FLEs can solicit resources from other sources, they may not need to invest as many of their individual resources. In particular, colleague support even appears to serve as a substitute for FLEs' individual resource investments in the resource gain spiral.