58 resultados para Endothelial cell damage


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

S-glutathionylation occurs when reactive oxygen or nitrogen species react with protein-cysteine thiols. Glutaredoxin-1 (Glrx) is a cytosolic enzyme which enzymatically catalyses the reduction in S-glutathionylation, conferring reversible signalling function to proteins with redox-sensitive thiols. Glrx can regulate vascular hypertrophy and inflammation by regulating the activity of nuclear factor κB (NF-κB) and actin polymerization. Vascular endothelial growth factor (VEGF)-induced endothelial cell (EC) migration is inhibited by Glrx overexpression. In mice overexpressing Glrx, blood flow recovery, exercise function and capillary density were significantly attenuated after hindlimb ischaemia (HLI). Wnt5a and soluble Fms-like tyrosine kinase-1 (sFlt-1) were enhanced in the ischaemic-limb muscle and plasma respectively from Glrx transgenic (TG) mice. A Wnt5a/sFlt-1 pathway had been described in myeloid cells controlling retinal blood vessel development. Interestingly, a Wnt5a/sFlt-1 pathway was found also to play a role in EC to inhibit network formation. S-glutathionylation of NF-κB components inhibits its activation. Up-regulated Glrx stimulated the Wnt5a/sFlt-1 pathway through enhancing NF-κB signalling. These studies show a novel role for Glrx in post-ischaemic neovascularization, which could define a potential target for therapy of impaired angiogenesis in pathological conditions including diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bronchial epithelium is a source of both α and β chemokines and, uniquely, of secretory component (SC), the extracellular ligand-binding domain of the polymeric IgA receptor. Ig superfamily relatives of SC, such as IgG and α2-macroglobulin, bind IL-8. Therefore, we tested the hypothesis that SC binds IL-8, modifying its activity as a neutrophil chemoattractant. Primary bronchial epithelial cells were cultured under conditions to optimize SC synthesis. The chemokines IL-8, epithelial neutrophil-activating peptide-78, growth-related oncogene α, and RANTES were released constitutively by epithelial cells from both normal and asthmatic donors and detected in high m.w. complexes with SC. There were no qualitative differences in the production of SC-chemokine complexes by epithelial cells from normal or asthmatic donors, and in all cases this was the only form of chemokine detected. SC contains 15% N-linked carbohydrate, and complete deglycosylation with peptide N-glycosidase F abolished IL-8 binding. In micro-Boyden chamber assays, no IL-8-dependent neutrophil chemotactic responses to epithelial culture supernatants could be demonstrated. SC dose-dependently (IC50 ∼0.3 nM) inhibited the neutrophil chemotactic response to rIL-8 (10 nM) in micro-Boyden chamber assays and also inhibited IL-8-mediated neutrophil transendothelial migration. SC inhibited the binding of IL-8 to nonspecific binding sites on polycarbonate filters and endothelial cell monolayers, and therefore the formation of haptotactic gradients, without effects on IL-8 binding to specific receptors on neutrophils. The data indicate that in the airways IL-8 may be solubilized and inactivated by binding to SC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resveratrol is a plant polyphenol that has potent anti-inflammatory and anti-oxidant properties. age-related macular degeneration is a degenerative condition characterized by elevated levels of oxidation triggered cell damage and a subsequent inflammatory cascade. Resveratrol prevents activation of inflammatory pathways and is also a potent scavenger of reactive oxygen species and free radicals. Experiments using the mouse model have demonstrated that resveratrol reduces angiogenesis. The evidence suggests that resveratrol would be a useful inclusion in ocular nutritional supplements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To investigate laboratory evidence of abnormal angiogenesis, hemorheologic factors, endothelial damage/dysfunction, and age-related macular degeneration (ARMD). DESIGN: Comparative cross-sectional study. PARTICIPANTS: We studied 78 subjects (26 men and 52 women; mean age 74 years; standard deviation [SD] 9.0) with ARMD attending a specialist referral clinic. Subjects were compared with 25 healthy controls (mean age, 71 years; SD, 11). INTERVENTION AND OUTCOME MEASURES: Levels of vascular endothelial growth factor (VEGF, an index of angiogenesis), hemorheologic factors (plasma viscosity, hematocrit, white cell count, hemoglobin, platelets), fibrinogen (an index of rheology and hemostasis), and von Willebrand factor (a marker of endothelial dysfunction) were measured. RESULTS: Median plasma VEGF (225 vs. 195 pg/ml, P = 0.019) and mean von Willebrand factor (124 vs. 99 IU/dl, P = 0.0004) were greater in ARMD subjects than the controls. Mean plasma fibrinogen and plasma viscosity levels were also higher in the subjects (both P < 0.0001). There were no significant differences in other indices between cases and controls. When "dry" (drusen, atrophy, n = 28) and "exudative" (n = 50) ARMD subjects were compared, there was no significant differences in VEGF, fibrinogen, viscosity, or von Willebrand factor levels. There were no significant correlations between the measured parameters. Stepwise multiple regression analysis did not demonstrate any significant clinical predictors (age, gender, smoking, body mass index, history of vascular disease, or hypertension) for plasma VEGF or fibrinogen levels, although smoking status was a predictor of plasma von Willebrand factor levels (P < 0.05). CONCLUSIONS: This study suggests an association between markers of angiogenesis (VEGF), hemorheologic factors, hemostasis, endothelial dysfunction, and ARMD. The interaction between abnormal angiogenesis and the components of Virchow's triad for thrombogenesis may in part contribute to the pathogenesis of ARMD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The oxidation of low-density lipoprotein (LDL) is thought to contribute to atherogenesis, which is an inflammatory disease involving activation of phagocytic cells. Myeloperoxidase, an enzyme which is able to produce hypochlorous acid (HOCl), is released from these phagocytic cells, and has been found in an active form in atherosclerotic plaques. HOCl can oxidize both the lipid and protein moiety of LDL, and HOCl-modified LDL has been found to be pro-inflammatory, although it is not known which component is responsible for this effect. As HOCl can oxidize lipids to give chlorohydrins, we hypothesized that phospholipid chlorohydrins might have toxic and pro-inflammatory effects. We have formed chlorohydrins from fatty acids (oleic, linoleic and arachidonic acids) and from phospholipids (stearoyl-oleoyl phosphatidylcholine, stearoyl-linoleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine), and investigated various biological effects of these oxidation products. Fatty acid and phospholipid chlorohydrins were found to deplete ATP levels in U937 cells in a concentration-dependent manner, with significant effects observed at concentrations of 25 µM and above. Low concentrations (25 µM) of stearoyl-oleoyl phosphatidylcholine and stearoyl-arachidonoyl phosphatidylcholine chlorohydrins were also found to increase caspase-3 activity. Finally, stearoyl-oleoyl phosphatidylcholine chlorohydrin increased leukocyte adhesion to artery segments isolated from C57Bl/6 mice. These results demonstrate potentially harmful effects of lipid chlorohydrins, and suggest that they may contribute to some of the pro-inflammatory effects that HOCl-modified low density lipoprotein has been found to induce.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: There is evidence to suggest a beneficial role for growth factors, including vascular endothelial growth factor (VEGF), in tissue repair and proliferation after injury within the lung. Whether this effect is mediated predominantly by actions on endothelial cells or epithelial cells is unknown. This study tested the hypothesis that VEGF acts as an autocrine trophic factor for human adult alveolar epithelial cells and that under situations of pro-apoptotic stress, VEGF reduces cell death. Design: In vitro cell culture study looking at the effects of 0.03% H2O2 on both A549 and primary distal lung epithelial cells.Measurement and Main Results: Primary adult human distal lung epithelial cells express both the soluble and membrane-associated VEGF isoforms and VEGF receptors 1 and 2. At physiologically relevant doses, soluble VEGF isoforms stimulate wound repair and have a proliferative action. Specific receptor ligands confirmed that this effect was mediated by VEGF receptor 1. In addition to proliferation, we demonstrate that VEGF reduces A549 and distal lung epithelial cell apoptosis when administered after 0.03% H2O2 injury. This effect occurs due to reduced caspase-3 activation and is phosphatidylinositol 3′–kinase dependent. Conclusion: In addition to its known effects on endothelial cells, VEGF acts as a growth and anti-apoptotic factor on alveolar epithelial cells. VEGF treatment may have potential as a rescue therapy for diseases associated with alveolar epithelial damage such as acute respiratory distress syndrome.