51 resultados para Circulating Endothelial Cells


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The exact aetiology of preeclampsia is unknown, but there is a good association with an imbalance in angiogenic growth factors and abnormal placentation [1]. Hydrogen sulphide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is pro-angiogenic vasodilator [2] and [3]. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Plasma levels of H2S were significantly decreased in preeclamptic women (p < 0.01), which was associated with reduced CSE message and protein expression in human placenta as determined by real-time PCR and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine (PAG) in first trimester (8–12 weeks gestation) human placental explants had reduced placenta growth factor (PlGF) production as assessed by ELISA and inhibited trophoblast invasion in vitro. Endothelial CSE knockdown by siRNA transfection increased the endogenous release of soluble fms-Like tyrosine kinase-1 (sFlt-1) and soluble endoglin, (sEng) from human umbilical vein endothelial cells while adenoviral-mediated CSE overexpression inhibited their release. Administration of PAG to pregnant mice induced hypertension, liver damage, and promoted abnormal labyrinth vascularisation in the placenta and decreased fetal growth. Finally, a slow releasing, H2S-generating compound, GYY4137, inhibited circulating sFlt-1 and sEng levels and restored fetal growth that was compromised by PAG-treatment demonstrating that the effect of CSE inhibitor was due to inhibition of H2S production. These results imply that endogenous H2S is required for healthy placental vasculature and a decrease in of CSE/H2S activity may contribute to the pathogenesis of preeclampsia. References [1] S. Ahmad, A. Ahmed, Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia, Circ Res., 95 (2004), pp. 884–891. [2] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, 322 (2008), pp. 587–590. [3] A. Papapetropoulos, et al., Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci USA, 106 (2009), pp. 21972–21977.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An increasing number of mechano-sensitive ion channels in endothelial cells have been identified in response to blood flow and hydrostatic pressure. However, how these channels respond to flow under different physiological and pathological conditions remains unknown. Our results show that epithelial Na+ channels (ENaCs) colocalize with hemeoxygenase-1 (HO-1) and hemeoxygenase-2 (HO-2) within the caveolae on the apical membrane of endothelial cells and are sensitive to stretch pressure and shear stress. ENaCs exhibited low levels of activity until their physiological environment was changed; in this case, the upregulation of HO-1, which in turn facilitated heme degradation and hence increased the carbon monoxide (CO) generation. CO potently increased the bioactivity of ENaCs, releasing the channel from inhibition. Endothelial cells responded to shear stress by increasing the Na+ influx rate. Elevation of intracellular Na+ concentration hampered the transportation of l-arginine, resulting in impaired nitric oxide (NO) generation. Our data suggest that ENaCs that are endogenous to human endothelial cells are mechano-sensitive. Persistent activation of ENaCs could inevitably lead to endothelium dysfunction and even vascular diseases such as atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. While generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NFkB and the sarcoplasmic reticulum calcium ATPase-2 (SERCA2), appear to promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Preeclampsia is a vascular disorder in pregnancyand is biochemical characterization by high soluble Flt-1 and lowplacenta growth factor as well as an imbalance in redox homeostasis.During conditions of high oxidative stress, cysteine residues on keyproteins are reversibly altered by S-glutathionylation, modifying theirfunction. Glutaredoxin-1 (Glrx) enzymatically catalyzes the removal of S-glutathione adducts, conferring reversible signaling dynamics toproteins with redox-sensitive cysteines. The role of Glrx in preeclampsiais unknown.METHODS: Immunohistochemistry and Western blot analysis for Glrx orglutathione were conducted on human placenta samples collected pre-termfrom early onset preeclamptic patients (n=10) or non-preeclamptic induceddeliveries (n=9). Human endothelial cells were infected with adenovirusencoding Glrx or LacZ prior to the cells being exposed to hypoxia (0.1%O2, 24h) to measure changes in soluble Flt-1 (sFlt-1). Quantitative PCRand ELISA were used to measure sFlt-1 at mRNA and protein level.RESULTS: Immunohistochemical staining for GSH revealed lowerS-glutathionylation adducts in preeclampsia placenta in comparison tocontrols. Glrx expression, which catalyses de-glutathionylation wasenhanced in early onset preeclampsia compared to pre-term controlsamples. In contrast, no change was observed in preeclamptic and IUGRplacentas at full term. In endothelial cells overexpressing Glrx, sFlt-1expression was dramatically enhanced at mRNA (3-fold P<0.05) andprotein level (5 fold P>0.01, n=4) after hypoxia andoverexpressing Glrxin mice enhanced levels of circulating sFlt-1 during in vivo ischemia.CONCLUSIONS: Enhanced Glrx expression in preeclamptic placentain line with an apparent decrease in S-glutathionylation may leavekey proteins susceptible to irreversible oxidation in conditions of highoxidative stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have been used in cell replacement therapies for connective tissue damage, but also can stimulate wound healing through paracrine activity. In order to further understand the potential use of MSCs to treat dogs with neurological disorders, this study examined the paracrine action of adipose-derived canine MSCs on neuronal and endothelial cell models. The culture-expanded MSCs exhibited a MSC phenotype according to plastic adherence, cell morphology, CD profiling and differentiation potential along mesenchymal lineages. Treating the SH-SY5Y neuronal cell line with serum-free MSC culture-conditioned medium (MSC CM) significantly increased SH-SY5Y cell proliferation (P < 0.01), neurite outgrowth (P = 0.0055) and immunopositivity for the neuronal marker βIII-tubulin (P = 0.0002). Treatment of the EA.hy926 endothelial cell line with MSC CM significantly increased the rate of wound closure in endothelial cell scratch wound assays (P = 0.0409), which was associated with significantly increased endothelial cell proliferation (P < 0.05) and migration (P = 0.0001). Furthermore, canine MSC CM induced endothelial tubule formation in EA.hy926 cells in a soluble basement membrane matrix. Hence, this study has demonstrated that adipose-derived canine MSC CM stimulated neuronal and endothelial cells probably through the paracrine activity of MSC-secreted factors. This supports the use of canine MSC transplants or their secreted products in the clinical treatment of dogs with neurological disorders and provides some insight into possible mechanisms of action.