94 resultados para Chalcogenide optical fibers
Resumo:
Fibre Bragg gratings at 1568nm have been inscribed in single mode TOPAS microstructured polymer optical fibre to characterise thermal and humidity sensitivity of the fibres in the 1550nm spectral region. Results demonstrate a temperature sensitivity of approximately -36 pm/°C and a humidity sensitivity of no more than - 0.59 pm/%RH. The fibre material appears to be very attractive for long term monitoring of high strains because of its insensitivity to humidity.
Resumo:
We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided. © 2010 Optical Society of America.
Resumo:
Interferometric sensors using optical fibers as a transduction medium have been shown to be sensitive to a variety of physical measurands. A result of this is that the resolution of a system designed to sense strain, for example, may be compromised by fluctuations in the temperature of the environment. The possibility of simultaneously determining the strain and temperature applied to the same piece of highly birefringent fiber is discussed. Second-order effects are shown to be important for long sensing lengths or in the presence of high strains or temperature changes. The results of experiments carried out to verify the theoretical predictions are also described.
Resumo:
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.
Resumo:
A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.
Resumo:
This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarise the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices.
Resumo:
A set of long period grating devices have been fabricated in photosensitive single mode fibre coated with a series of copper rings (period of 380μm, 50% duty cycle and length of 4cm). The long period gratings were inscribed with a uniform UV-laser exposure across the entire length of the copper ring patterned coating. The devices ranged in copper thickness from 0.5μm to 1.5μm. In addition, a control long period grating was fabricated in the same type of fibre with the same period for comparison. The refractive index and temperature spectral sensitivity of these devices were investigated and it was found that the index and temperature sensitivity is a function of the thickness of the copper rings, as supported by theoretical modelling. Furthermore, the index sensitivity of these devices in the 1.333 index region is greater than the control long period grating. The patterned 0.5μm coated long period grating gave a sensitivity of Δλ/Δn = -74 nm leading to a resolution of 1.4×10-3 compared to the control which had a sensitivity of Δλ/Δn = -32 nm with a resolution of 3.2×10-3 in the index region of 1.320 to 1.380 (aqueous solution regime). This demonstrates a two fold increase in the sensitivity. This novel fibre long period grating device shows potential for increasing the resolution of measurements of the index of aqueous solutions.
Resumo:
We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.
Resumo:
This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarize the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices. © 2011 Bentham Science Publishers Ltd. All rights reserved.
Resumo:
This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors.
Resumo:
We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses. © 2014 OSA.
Resumo:
Bragg gratings photo-inscribed in polymer optical fibers (POFs) are more sensitive to temperature and pressure than their silica counterparts, because of their larger thermo-optic coefficient and smaller Young's modulus. Polymer optical fiber Bragg gratings (POFBGs) are most often photo-written in poly(methylmethacrylate) (PMMA) based materials using a continuous-wave 325 nm HeCd laser. In this work, we present the first study about birefringence effects in POFBGs manufactured in different types of fiber. To achieve this, highly reflective (> 90%) gratings were produced with the phase mask technique. Their spectral response was then monitored in transmission with polarized light. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyzer. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. An inverse scattering technique applied to the experimental data provided an estimate of the photo-induced birefringence value arising from the side fabrication process. The response to lateral force was finally investigated for various incident directions using the PDL response of FBGs manufactured in step-index POFs. As the force induced birefringence adds to the photo-induced one, a force dependent evolution of the PDL maximum value was noticed, with a good temperature-insensitivity.
Resumo:
We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.
Resumo:
A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
We demonstrate erbium- and thulium-doped fibre ring lasers mode-locked with a single-walled carbon nanotubes (SWCNT) operating at normal intracavity dispersion and high nonlinearity. The lasers generate transform-limited picosecond inversed-modified soliton pulses. © 2014 OSA.