50 resultados para Blood Vessels.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of possible risk factors have been associated with Alzheimer'sdisease (AD).This chapter discusses the validity of the major risk factors that have been identifiedincluding age, genetics, exposure to aluminum, head injury, malnutrition and diet,mitochondrial dysfunction, vascular disease, immune system dysfunction, and infectionand proposes a hypothesis to explain how these various risk factors may cause ADpathology.Rare forms of early-onset familial AD (FAD) are strongly linked to the presence ofspecific gene mutations, viz. mutations in amyloid precursor protein (APP) andpresenilin (PSEN1/2) genes. By contrast, late-onset sporadic AD (SAD) is amultifactorial disorder in which age-related changes, genetic risk factors, such as allelicvariation in apolipoprotein E (Apo E) gene, vascular disease, head injury and risk factorsassociated with diet, immune system, mitochondrial function, and infection may all beinvolved.These risk factors interact to increase the rate of normal aging (=allostatic load')which over a lifetime results in degeneration of neurons and blood vessels and as aconsequence, the formation of abnormally aggregated =reactive' proteins such as ß-amyloid (Aß) and tau leading to the development of senile plaques (SP) andneurofibrillary tangles (NFT) respectively. Life-style changes that may reduce theallostatic load and therefore, the risk of dementia are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the factors influencing the distribution of β-amyloid (Aβ) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic Aβ deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Aβ deposits were distributed either in clusters 200-6400 μm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 μm in diameter. In some regions, smaller clusters of Aβ deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Aβ deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Aβ deposits and blood vessels, the classic Aβ deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Aβ deposition in the temporal lobe in sporadic AD. A regular distribution of Aβ deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To investigate neuropathological changes in the superior colliculus in chronic traumatic encephalopathy. METHODS: The densities of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, astrocytic tangles, and neuritic plaques, together with abnormally enlarged neurons, typical neurons, vacuolation, and frequency of contacts with blood vessels, were studied across the superior colliculus from pia mater to the periaqueductal gray in eight chronic traumatic encephalopathy and six control cases. RESULTS: Tau-immunoreactive pathology was absent in the superior colliculus of controls but present in varying degrees in all chronic traumatic encephalopathy cases, significant densities of tau-immunoreactive neurofibrillary tangles, NT, or dot-like grains being present in three cases. No significant differences in overall density of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, enlarged neurons, vacuoles, or contacts with blood vessels were observed in control and chronic traumatic encephalopathy cases, but chronic traumatic encephalopathy cases had significantly lower mean densities of neurons. The distribution of surviving neurons across the superior colliculus suggested greater neuronal loss in intermediate and lower laminae in chronic traumatic encephalopathy. Changes in density of the tau-immunoreactive pathology across the laminae were variable, but in six chronic traumatic encephalopathy cases, densities of tau-immunoreactive neurofibrillary tangles, neuropil threads, or dot-like grains were significantly greater in intermediate and lower laminae. Pathological changes were not correlated with the distribution of blood vessels. CONCLUSIONS: The data suggest significant pathology affecting the superior colliculus in a proportion of chronic traumatic encephalopathy cases with a laminar distribution which could compromise motor function rather than sensory analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease.