106 resultados para Belief Propagation
Resumo:
By spectral analysis, and using joint time-frequency representations, we present the theoretical basis to design invariant band-limited Airy pulses with an arbitrary degree of robustness, and an arbitrary range of single mode fiber chromatic dispersion. The numerically simulated examples confirm the theoretically predicted pulse partial invariance in the propagation of the pulse in the fiber.
Resumo:
We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20x80km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission.
Resumo:
Limitations in the performance of coherent transmission systems employing digital back-propagation due to four-wave mixing impairments are reported for the first time. A significant performance constraint is identified, originating from four-wave mixing between signals and amplified spontaneous emission noise which induces a linear increase in the standard deviation of the received field with signal power, and linear dependence on transmission distance.
Resumo:
We report the performance of coherently-detected nine-channel WDM transmission over high dispersion fibers, using polarization multiplexed m-ary quadrature amplitude modulation (m = 4, 16, 64, 256) at 112 Gbit/s. Compensation of fiber nonlinearities via digital back-propagation enables up to 10 dB improvement in maximum transmittable power and similar to 8 dB Q(eff) improvement which translates to a nine-fold enhancement in transmission reach for PM-256QAM, where the largest improvements are associated with higher-order modulation formats. We further demonstrate that even under strong nonlinear distortion the transmission reach only reduces by a factor of similar to 2.5 for a 2 unit increase in capacity (log(2)m) when full band DBP is employed, in proportion to the required back-to-back OSNR.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices.
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
There appears to be a missing dimension in OL literature to embrace the collective experience of emotion, both within groups and communities and also across the organization as a whole. The concept of OL efficacy- as a stimulus offering energy and direction for learning - remains unexplored. This research involved engaging with a company we have called ‘Electroco’ in depth to create a rich and nuanced representation of OL and members’ perceptions of OL over an extended time-frame (five years). We drew upon grounded theory research methodology (Locke, 2001), to elicit feedback from the organization, which was then used to inform future research plans and/ or refine emerging ideas. The concept of OL efficacy gradually emerged as a factor to be considered when exploring the relationship between individual learning and OL. . Bearing in mind Bandura’s (1982) conceptualization of self-efficacy (linked with mastery, modelling, verbal persuasion and emotional arousal), we developed a coding strategy encompassing these four factors as conceptualized at the organizational level. We added a fifth factor: ‘control of OL.’ We focused on feelings across the organization and the extent of consensus or otherwise around these five attributes. The construct has potential significance for how people are managed in many ways. Not only is OL efficacy is difficult for competitors to copy (arising as it does from the collective experience of working within a specific context); the self-efficacy concept suggests that success can be engineered with ‘small wins’ to reinforce mastery perceptions. Leaders can signal the importance of interaction with the external context, and encourage reflection on the strategies adopted by competitors or benchmark organizations (modelling). The theory also underlines the key role managers may play in persuading others about their organization’s propensity to learn (by focusing on success stories, for example). Research is set to continue within other sectors, including the high-performance financial service sector as well as the health-care technology sector.
Resumo:
The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.
Resumo:
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagation algorithm. We describe how this work relates to other quantile regression methods and apply the method on both synthetic and real data sets. The method is shown to be competitive with state of the art methods whilst allowing for the leverage of the full Gaussian process probabilistic framework.
Resumo:
Recently underwater sensor networks (UWSN) attracted large research interests. Medium access control (MAC) is one of the major challenges faced by UWSN due to the large propagation delay and narrow channel bandwidth of acoustic communications used for UWSN. Widely used slotted aloha (S-Aloha) protocol suffers large performance loss in UWSNs, which can only achieve performance close to pure aloha (P-Aloha). In this paper we theoretically model the performances of S-Aloha and P-Aloha protocols and analyze the adverse impact of propagation delay. According to the observation on the performances of S-Aloha protocol we propose two enhanced S-Aloha protocols in order to minimize the adverse impact of propagation delay on S-Aloha protocol. The first enhancement is a synchronized arrival S-Aloha (SA-Aloha) protocol, in which frames are transmitted at carefully calculated time to align the frame arrival time with the start of time slots. Propagation delay is taken into consideration in the calculation of transmit time. As estimation error on propagation delay may exist and can affect network performance, an improved SA-Aloha (denoted by ISA-Aloha) is proposed, which adjusts the slot size according to the range of delay estimation errors. Simulation results show that both SA-Aloha and ISA-Aloha perform remarkably better than S-Aloha and P-Aloha for UWSN, and ISA-Aloha is more robust even when the propagation delay estimation error is large. © 2011 IEEE.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT