54 resultados para Amplifiers (Electronics)
Resumo:
We investigate the transmission performance of advanced modulation formats in nonlinear regenerative channels based on cascaded phase sensitive amplifiers. We identify the impact of amplitude and phase noise dynamics along the transmission line and show that after a cascade of regenerators, densely packed single ring PSK constellations outperform multi-ring constellations. The results of this study will greatly simplify the design of future nonlinear regenerative channels for ultra-high capacity transmission. © 2013 Optical Society of America.
Resumo:
Future high capacity optical links will have to make use of frequent signal regeneration to enable long distance transmission. In this respect, the role of all-optical signal processing becomes increasingly important because of its potential to mitigate signal impairments at low cost and power consumption. More substantial benefits are expected if regeneration is achieved simultaneously on a multiple signal band. Until recently, this had been achieved only for on-off keying modulation formats. However, as in future transmission links the information will be encoded also in the phase for enhancing the spectral efficiency, novel subsystem concepts will be needed for multichannel processing of such advanced signal formats. In this paper we show that phase sensitive amplifiers can be an ideal technology platform for developing such regenerators and we discuss our recent demonstration of the first multi-channel regenerator for phase encoded signals.
Resumo:
For the first time for the model of real-world forward-pumped fibre Raman amplifier with the randomly varying birefringence, the stochastic calculations have been done numerically based on the Kloeden-Platen-Schurz algorithm. The results obtained for the averaged gain and gain fluctuations as a function of polarization mode dispersion (PMD) parameter agree quantitatively with the results of previously developed analytical model. Simultaneously, the direct numerical simulations demonstrate an increased stochastisation (maximum in averaged gain variation) within the region of the polarization mode dispersion parameter of 0.1÷0.3 ps/km1/2. The results give an insight into margins of applicability of a generic multi-scale technique widely used to derive coupled Manakov equations and allow generalizing analytic model with accounting for pump depletion, group-delay dispersion and Kerr-nonlinearity that is of great interest for development of the high-transmission-rates optical networks.
Resumo:
For a fibre Raman amplifier with randomly varying birefringence, we provide insight on the validity of previously explored multi-scale techniques leading to polarisation pulling of the signal state of polarisation to the pump state of polarisation. Unlike previous study, we demonstrate that in addition to polarisation pulling a new random birefringence-mediated phenomenon that goes beyond existing multi-scale techniques can boost resonance-like gain fluctuations similar to the Stochastic Anti-Resonance. For mode locked fibre lasers we report on fast and slow polarisation dynamics of fundamental, bound state, and multipulsing vector solitons along with stretched pulses. We demonstrate that tuning cavity anisotropy and birefringence along with parameters of an injected signal with randomly varying state of polarisation provides access to the variety of vector waveforms previously unexplored.
Resumo:
The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW beam breakup and the growth of multiple pulses. This can be both a detrimental effect, limiting the performance of amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. The same technique is applicable to the study of spatial MI in solid state laser amplifiers and MI in non-uniform media. © 2011 SPIE.
Resumo:
Raman fibre lasers and converters using the stimulated Raman scattering (SRS) in optical fibre waveguide are attractive for many applications ranging from telecommunications to bio-medical applications [1]. Multiple-wavelength Raman laser sources emitting at two and more wavelengths have been proposed to increase amplification spectrum of Raman fibre amplifiers and to improve noise characteristics [2,3]. Typically, a single fibre waveguide is used in such devices while multi-wavelength generation is achieved by employing corresponding number of fibre Bragg grating (FBG) pairs forming laser resonator. This approach, being rather practical, however, might not provide a good level of cross coherence between radiation generated at different wavelengths due to difference in FBGs and random phase fluctuations between the two wavelengths. In this work we examine a scheme of two-wavelength Raman fibre laser with high-Q cavity based on spectral intracavity broadening [3]. We demonstrate feasibility of such configuration and perform numerical analysis clarifying laser operation using an amplitude propagation equation model that accounts for all key physical effects in nonlinear fibre: dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre losses. The key idea behind this scheme is to take advantage of the spectral broadening that occurs in optical fibre at high powers. The effect of spectral broadening leads to effective decrease of the FBGs reflectivity and enables generation of two waves in one-stage Raman laser. The output spectrum in the considered high-Q cavity scheme corresponds to two peaks with 0.2 - 1 nm distance between them. © 2011 IEEE.
Resumo:
The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to cw radiation breakup. This can be both a detrimental effect limiting the performance of amplifiers and an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. © 2010 Optical Society of America.
Resumo:
We show experimentally a 57nm gain bandwidth for an ultra-long Raman fiber laser based amplification technique using only a single pump wavelength. The enhanced gain bandwidth and gain flatness is investigated for single and multi-cavity designs. ©2010 IEEE.
Resumo:
We report the first WDM numerical characterisation of crosstalk growth in cascaded Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPAs). A cascade of ten RA-FOPAs results in ∼13dB lower crosstalk than the equivalent cascade of conventional FOPAs.