54 resultados para 380304 Neurocognitive Patterns and Neural Networks
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Optical data communication systems are prone to a variety of processes that modify the transmitted signal, and contribute errors in the determination of 1s from 0s. This is a difficult, and commercially important, problem to solve. Errors must be detected and corrected at high speed, and the classifier must be very accurate; ideally it should also be tunable to the characteristics of individual communication links. We show that simple single layer neural networks may be used to address these problems, and examine how different input representations affect the accuracy of bit error correction. Our results lead us to conclude that a system based on these principles can perform at least as well as an existing non-trainable error correction system, whilst being tunable to suit the individual characteristics of different communication links.
Resumo:
In this work, different artificial neural networks (ANN) are developed for the prediction of surface roughness (R a) values in Al alloy 7075-T7351 after face milling machining process. The radial base (RBNN), feed forward (FFNN), and generalized regression (GRNN) networks were selected, and the data used for training these networks were derived from experiments conducted using a high-speed milling machine. The Taguchi design of experiment was applied to reduce the time and cost of the experiments. From this study, the performance of each ANN used in this research was measured with the mean square error percentage and it was observed that FFNN achieved the best results. Also the Pearson correlation coefficient was calculated to analyze the correlation between the five inputs (cutting speed, feed per tooth, axial depth of cut, chip°s width, and chip°s thickness) selected for the network with the selected output (surface roughness). Results showed a strong correlation between the chip thickness and the surface roughness followed by the cutting speed. © ASM International.
Resumo:
This chapter explores how gentrifiers in Istanbul mobilise their social networks and social capital during the gentrification process, and how their networks are constructed through processes of “ place making” and belonging. In addition, this chapter aims to demonstrate how social capital and social networks work in practice during the gentrification process. It also examines place making and claiming strategies of gentrifiers by focusing on the following questions: (a) What are the spatial strategies of the new middle class, and what is the importance of these strategies?; (b) How are class and spatial boundaries designated in gentrified neighbourhoods?; (c) What kinds of networks and relationships play a role in developing certain housing dispositions or belonging patterns
Resumo:
We study the problem of detecting sentences describing adverse drug reactions (ADRs) and frame the problem as binary classification. We investigate different neural network (NN) architectures for ADR classification. In particular, we propose two new neural network models, Convolutional Recurrent Neural Network (CRNN) by concatenating convolutional neural networks with recurrent neural networks, and Convolutional Neural Network with Attention (CNNA) by adding attention weights into convolutional neural networks. We evaluate various NN architectures on a Twitter dataset containing informal language and an Adverse Drug Effects (ADE) dataset constructed by sampling from MEDLINE case reports. Experimental results show that all the NN architectures outperform the traditional maximum entropy classifiers trained from n-grams with different weighting strategies considerably on both datasets. On the Twitter dataset, all the NN architectures perform similarly. But on the ADE dataset, CNN performs better than other more complex CNN variants. Nevertheless, CNNA allows the visualisation of attention weights of words when making classification decisions and hence is more appropriate for the extraction of word subsequences describing ADRs.