49 resultados para 090602 Control Systems Robotics and Automation
Resumo:
Theoretical developments on pinning control of complex dynamical networks have mainly focused on the deterministic versions of the model dynamics. However, the dynamical behavior of most real networks is often affected by stochastic noise components. In this paper the pinning control of a stochastic version of the coupled map lattice network with spatiotemporal characteristics is studied. The control of these complex dynamical networks have functional uncertainty which should be considered when calculating stabilizing control signals. Two feedback control methods are considered: the conventional feedback control and modified stochastic feedback control. It is shown that the typically-used conventional control method suffers from the ignorance of model uncertainty leading to a reduction and potentially a collapse in the control efficiency. Numerical verification of the main result is provided for a chaotic coupled map lattice network. © 2011 IEEE.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
External metrology systems are increasingly being integrated with traditional industrial articulated robots, especially in the aerospace industries, to improve their absolute accuracy for precision operations such as drilling, machining and jigless assembly. While currently most of the metrology assisted robotics control systems are limited in their position update rate, such that the robot has to be stopped in order to receive a metrology coordinate update, some recent efforts are addressed toward controlling robots using real-time metrology data. The indoor GPS is one of the metrology systems that may be used to provide real-time 6DOF data to a robot controller. Even if there is a noteworthy literature dealing with the evaluation of iGPS performance, there is, however, a lack of literature on how well the iGPS performs under dynamic conditions. This paper presents an experimental evaluation of the dynamic measurement performance of the iGPS, tracking the trajectories of an industrial robot. The same experiment is also repeated using a laser tracker. Besides the experiment results presented, this paper also proposes a novel method for dynamic repeatability comparisons of tracking instruments. © 2011 Springer-Verlag London Limited.
Resumo:
In this paper a surgical robotic device for cochlear implantation surgery is described that is able to discriminate tissue interfaces and other controlling parameters ahead of a drill tip. The advantage in surgery is that tissues at interfaces can be preserved. The smart tool is able to control interaction with respect to the flexing tissue to avoid penetration control the extent of protrusion with respect to the real-time position of the tissue. To interpret drilling conditions, and conditions leading up to breakthrough at a tissue interface, the sensing scheme used enables discrimination between the variety of conditions posed in the drilling environment. The result is a robust fully autonomous system able to respond to tissue type, behaviour and deflection in real-time. The paper describes the robotic tool that has been designed to be used in the surgical environment where it has been used in the operating room.