161 resultados para wavelength multiplexing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel quasidistributed in-fiber Bragg grating (FBG) temperature sensor system has been developed for temperature proving in vivo in the human body for medical applications, e.g., hyperthermia treatment. This paper provides the operating principle of FBG temperature sensors and then the design of the sensor head. High-resolution detection of the wavelength-shifts induced by temperature changes are achieved using drift-compensated interferometric detection while the return signals from the FBG sensor array are demultiplexed with a simple monochromator which offers crosstalk-free wavelength-division-multiplexing (WDM). A “strain-free” probe is designed by enclosing the FBG sensor array in a protection sleeve. A four FBG sensor system is demonstrated and the experimental results are in good agreement with those obtained by traditional electrical thermocouple sensors. A resolution of 0.1°C and an accuracy of ±0.2°C over a temperature range of 30-60°C have been achieved, which meet established medical requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here a new class of multi-channel Fiber Bragg grating (FBG), which provides the characteristics of channelized dispersion but does so with only a single reflection band. An FBG of this type can provide pure phase control of the spectral waveform of optical pulses without introducing any deleterious insertion-loss-variation. We anticipate that this new class of FBG will find some applications in wavelength-division- multiplexing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercontinuum generation in ultra-long Raman fibre laser cavities is compared for a range of fibre dispersions in the anomalous and normal regimes. For normal dispersion improved performance and efficiency is achieved using dual wavelength pumping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines options for high capacity all optical networks. Specifically optical time division multiplexed (OTDM) networks based on electro-optic modulators are investigated experimentally, whilst comparisons with alternative approaches are carried out. It is intended that the thesis will form the basis of comparison between optical time division multiplexed networks and the more mature approach of wavelength division multiplexed networks. Following an introduction to optical networking concepts, the required component technologies are discussed. In particular various optical pulse sources are described with the demanding restrictions of optical multiplexing in mind. This is followed by a discussion of the construction of multiplexers and demultiplexers, including favoured techniques for high speed clock recovery. Theoretical treatments of the performance of Mach Zehnder and electroabsorption modulators support the design criteria that are established for the construction of simple optical time division multiplexed systems. Having established appropriate end terminals for an optical network, the thesis examines transmission issues associated with high speed RZ data signals. Propagation of RZ signals over both installed (standard fibre) and newly commissioned fibre routes are considered in turn. In the case of standard fibre systems, the use of dispersion compensation is summarised, and the application of mid span spectral inversion experimentally investigated. For green field sites, soliton like propagation of high speed data signals is demonstrated. In this case the particular restrictions of high speed soliton systems are discussed and experimentally investigated, namely the increasing impact of timing jitter and the downward pressure on repeater spacings due to the constraint of the average soliton model. These issues are each addressed through investigations of active soliton control for OTDM systems and through investigations of novel fibre types respectively. Finally the particularly remarkable networking potential of optical time division multiplexed systems is established, and infinite node cascadability using soliton control is demonstrated. A final comparison of the various technologies for optical multiplexing is presented in the conclusions, where the relative merits of the technologies for optical networking emerges as the key differentiator between technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a detailed study of advanced fibre grating devices using Bragg (FBG) and long-period (LPG) structures and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below. One of the most important contributions from the research work presented in this thesis is a systematic theoretical study of many distinguishing structures of fibre gratings. Starting from the Maxwell equations, the coupled-mode equations for both FBG and LPG were derived and the mode-overlap factor was analytically discussed. Computing simulation programmes utilising matrix transform method based on the models built upon the coupled-mode equations were developed, enabling simulations of spectral response in terms of reflectivity, bandwidth, sidelobes and dispersion of gratings of different structures including uniform and chirped, phase-shifted, Moiré, sampled Bragg gratings, phase-shifted and cascaded long-period gratings. Although the majority of these structures were modelled numerically, analytical expressions for some complex structures were developed with a clear physical picture. Several apodisation functions were proposed to improve sidelobe suppression, which guided effective production of practical devices for demanding applications. Fibre grating fabrication is the other major part involved in the Ph.D. programme. Both the holographic and scan-phase-mask methods were employed to fabricate Bragg and long-period gratings of standard and novel structures. Significant improvements were particularly made in the scan-phase-mask method to enable the arbitrarily tailoring of the spectral response of grating devices. Two specific techniques - slow-shifting and fast-dithering the phase-mask implemented by a computer controlled piezo - were developed to write high quality phase-shifted, sampled and apodised gratings. A large number of LabVIEW programmes were constructed to implement standard and novel fabrication techniques. In addition, some fundamental studies of grating growth in relating to the UV exposure and hydrogenation induced index were carried out. In particular, Type IIa gratings in non-hydrogenated B/Ge co-doped fibres and a re-generated grating in hydrogenated B/Ge fibre were investigated, showing a significant observation of thermal coefficient reduction. Optical sensing applications utilising fibre grating devices form the third major part of the research work presented in this thesis. Several experiments of novel sensing and sensing-demodulating were implemented. For the first time, an intensity and wavelength dual-coding interrogation technique was demonstrated showing significantly enhanced capacity of grating sensor multiplexing. Based on the mode-splitting measurement, instead of using conventional wavelength-shifting detection technique, successful demonstrations were also made for optical load and bend sensing of ultra-high sensitivity employing LPG structures. In addition, edge-filters and low-loss high-rejection bandpass filters of 50nm stop-band were fabricated for application in optical sensing and high-speed telecommunication systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT This thesis describes a detailed study of advanced optical fibre sensors based on fibre Bragg grating (FBG), tilted fibre Bragg grating (TFBG) and long-period grating (LPG) and their applications in optical communications and sensing. The major contributions presented in this thesis are summarised below.The most important contribution from the research work presented in this thesis is the implementation of in-fibre grating based refractive index (RI) sensors, which could be the good candidates for optical biochemical sensing. Several fibre grating based RI sensors have been proposed and demonstrated by exploring novel grating structures and different fibre types, and employing efficient hydrofluoric acid etching technique to enhance the RI sensitivity. All the RI devices discussed in this thesis have been used to measure the concentration of sugar solution to simulate the chemical sensing. Efforts have also been made to overcome the RI-temperature cross-sensitivity for practical application. The demonstrated in-fibre grating based RI sensors could be further implemented as potential optical biosensors by applying bioactive coatings to realise high bio-sensitivity and bio-selectivity.Another major contribution of this thesis is the application of TFBGs. A prototype interrogation system by the use of TFBG with CCD-array was implemented to perform wavelength division multiplexing (WDM) interrogation around 800nm wavelength region with the advantages of compact size, fast detection speed and low-cost. As a high light, a novel in-fibre twist sensors utilising strong polarisation dependant coupling behaviour of an 81°-TFBG was presented to demonstrate the high torsion sensitivity and capability of direction recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An astigmatic scheme of a laser wavelength meter based on a single air-gap Fizeau interferometer is described. For a multimode laser, the accuracy in determining the center of gravity of a spectrum is within 1GHz. Two complementary testing techniques are proposed for the instrument. By using them, it was shown for the first time that, for this type of meters, a systematic error arises and increases with a decrease in the radiation-spectrum width. The effect is periodic in the lasing frequency and results from a weak beam that is brought about by a reflection from the front surface of the interferometer. Moreover, in the previously designed optical schemes, this effect is so strong that unambiguous determination of the wavelength of a single-frequency radiation is impossible. The use of an astigmatic scheme helps additionally attenuate the influence of the third beam, thus eliminating the ambiguity in the results and reducing the absolute error to a value of ±1.5 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bidirectional nonreciprocal wavelength-interleaving filter based on an optically coherent high birefringence fiber transversal filter structure is demonstrated. Stable, low loss, low dispersion, and high isolation operation is demonstrated with reconfigurable transfer characteristics for interleaved channel spacing of 0.8 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a single- and dual-wavelength switchable erbium-doped fiber laser (EDFL) by utilizing intracavity polarization selective filters based on tilted fiber gratings (TFGs). In the cavity, one 45° TFG functions as an in-fiber polarizer and the other 77° TFG is used as a fiber polarization dependent loss (PDL) filter. The combined polarization effect from these two TFGs enables the laser to switch between the single- and the dual-wavelength operation with a single-polarization state at room temperature. The laser output at each wavelength shows an optical signal-to-noise ratio (OSNR) of >60 dB, a side mode suppression ratio (SMSR) of >50 dB, and a polarization extinction ratio of ~35 dB. The proposed EDFL can give stable output under laboratory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave signal generation by using the photonic beating from a phase-shift fiber Bragg grating (PS-FBG)-based dual-wavelength laser is proposed and experimentally demonstrated. The dual-wavelength laser is formed by a linear cavity, in which a PS-FBG is used as a dual-wavelength selective component. Transversal loading on the PS-FBG enhances the birefringence of the optical fiber and consequently makes the transmission peak of the PS-FBG splitting into two sharp transmission peaks of orthogonal polarizations. The wavelength spacing between the two transmission peaks increases with the transversal loading on the PS-FBG, thus making the polarization beating frequency increase. This property is exploited in a transversal loading sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-cost high-resolution wavelength-division-multiplexing (WDM) interrogation system operating around 800 nm region with operational bandwidth up to 60 nm and resolution of 12.7 pm utilizing a tilted fiber Bragg grating (TFBG) and a CCDarray detector has been implemented. The system has been evaluated for interrogating fiber Bragg grating based strain, temperature sensors, giving sensitivities of 0.59 pm/µe and 5.6 pm/°C, which are in good agreement with previously reported values. Furthermore, the system has been utilized to detect the refractive index change of sample liquids, demonstrating a capability of measuring index change as small as 10¯5. In addition, the vectorial expression of phase match condition and fabrication of TFBG have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental demonstration of a 200-km-long, dual-wavelength Raman laser utilizing two slightly different-wavelength fiber Bragg gratings, one on each side of the fiber span. The obtained results clearly prove the generation of two independent Raman lasers with a distributed “random” Rayleigh scattering mirror forming a cavity together with each of the individual fiber Bragg grating reflectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe in the letter a technique for making extended-range interferometric measurements with a coherence multiplexed system by means of a variation on the dual-wavelength technique. The interferometer is illuminated with a single source and the two wavelengths are synthesised at the output by means of an interference filter.