35 resultados para ultra high energy cosmic rays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern high-power, pulsed lasers are driven by strong intracavity fluctuations. Critical in driving the intracavity dynamics is the nontrivial phase profiles generated and their periodic modification from either nonlinear mode-coupling, spectral filtering or dispersion management. Understanding the theoretical origins of the intracavity fluctuations helps guide the design, optimization and construction of efficient, high-power and high-energy pulsed laser cavities. Three specific mode-locking component are presented for enhancing laser energy: waveguide arrays, spectral filtering and dispersion management. Each component drives a strong intracavity dynamics that is captured through various modeling and analytic techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile. © 2010 American Institute of Physics.