32 resultados para subgrain coalescence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the factors influencing the distribution of β-amyloid (Aβ) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic Aβ deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Aβ deposits were distributed either in clusters 200-6400 μm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 μm in diameter. In some regions, smaller clusters of Aβ deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Aβ deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Aβ deposits and blood vessels, the classic Aβ deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Aβ deposition in the temporal lobe in sporadic AD. A regular distribution of Aβ deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.