93 resultados para repetition tunable


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bragg grating fast tunable filter prototype working over a linear tuning range of 45 nm with a maximum tuning speed of 21 nm/ms has been realized. The tunable filter system is based on two piezoelectric stack actuators moving a mechanical device thus compressing an apodized fiber Bragg grating. The filter allows both traction and compression and can work in transmission and in reflection. It is designed to work with a channel spacing of 100 GHz according to the ITU specifications for wavelength division multiplexing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe how an acousto-optic tunable filter can be used to both demultiplex the signals from multiple fibre Bragg grating sensors and simultaneously provide wide bandwidth signal demodulation in a system using interferometric wavelength shift detection. In an experimental demonstration, the approach provided a noise limited strain resolution of 24.9 nε Hz -1/2 at 15 Hz. © 2007 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe fabrication and characterisation of smooth low-loss waveguides in BK7 optical glass bymeans of direct femtosecond inscription with chirp-pulse oscillator, operating at 800 nm and 11 MHz repetition rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate experimentally a novel and simple tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a distribution feedback laser diode and high reflection fiber Bragg gratings (FBGs). In this filter, variable time delay is provided by cascaded high reflection fiber Bragg gratings (FBGs), and the tuning of the filter is realized by tuning different FBG to match the fixed carrier wavelength, or adjusting the carrier wavelength to fit different FBG. The incoherent negative tapping is realized by using the carrier depletion effect in a distribution feedback laser diode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we demonstrate a broadly tunable InGaAsInP strained multiquantum-well external cavity diode laser, which operates in the spectral range of 14941667 nm. A maximum continuous-wave output power in excess of 81 mW and sidemode suppression ratio higher than 50 dB were achieved in the central part of the tuning range. Different pump current and temperature regimes are investigated. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary form only given. Broadly tunable compact visible laser sources in the spectral region of 500-650 nm are valuable in biophotonics, photomedicine and for many applications including spectroscopy, laser projection and confocal microscopy. Unfortunately, commercially available lasers of this spectral range are in practice bulky and inconvenient in use. An attractive method for the realization of portable visible laser sources is the frequency-doubling of the infrared laser diodes in a nonlinear crystal containing a waveguide [1]. Nonlinear crystal waveguides that offer an order-of-magnitude increase in the IR-to-visible conversion efficiency also enable a very different approach to second-harmonic generation (SHG) tunability in periodically-poled crystals, promising order-of-magnitude increase of wavelength range for SHG conversion. This is possible by utilization of a significant difference in the effective refractive indices of the high-order and low-order modes in multimode waveguides [2]. The recent availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µ?? and 1.3 µp? [3,4], in combination with well-established techniques to fabricate good quality waveguides in nonlinear crystals, allows compact tunable CW laser sources in the visible spectral region to be realized [2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a compact tunable all-room-temperature frequency-doubling scheme, using a periodically poled potassium titanyl phosphate (PPKTP) waveguide and a QD-ECDL. A broad wavelength tunability of the second harmonic generated light (SHG) in the spectral region between 567.7 and 629.1 nm was achieved, with maximum conversion efficiencies in range of 0.34%-7.9%. The maximum output power for the SHG light was 4.11 mW at 591.5 nm, achieved for 52 mW of launched pump power at 1183 nm, resulting in a conversion efficiency of 7.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source using all chirped quantum dot (QD) structures is demonstrated (60nm tunability). Under fundamental mode-locked operation, the highest peak power of 4.39 W is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasi-phase-matching is an important and widelyused technique in nonlinear optics enabling efficient frequency up-conversion. However, since its introduction almost half a century ago, this technique is well developed for near infrared (IR) but is intrinsically limited in spectral tunability in the visible range by the strict conditions set by the spatial modulation which compensates the momentum mismatch imposed by the dispersion. Here, we provide a fundamental generalization of quasi-phase-matching based on the utilization of a significant difference in the effective refractive indices of the high- and low-order modes in multimode waveguides. This concept enables to match the period of poling in a very broad wavelength range and opens up a new avenue for an order-ofmagnitude increase in wavelength range for frequency conversion from a single crystal. Using this approach, we demonstrate an all-room-temperature continuous-wave (CW) second harmonic generation (SHG) with over 60 nm tunability from green to red in a periodically-poled potassium titanyl phosphate (PPKTP) waveguide pumped by a single broadly-tunable quantumdot laser diode. © 2012 by Astro, Ltd.