38 resultados para quantum error correction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presbyopia is an age-related eye condition where one of the signs is the reduction in the amplitude of accommodation, resulting in the loss of ability to change the eye's focus from far to near. It is the most common age-related ailments affecting everyone around their mid-40s. Methods for the correction of presbyopia include contact lens and spectacle options but the surgical correction of presbyopia still remains a significant challenge for refractive surgeons. Surgical strategies for dealing with presbyopia may be extraocular (corneal or scleral) or intraocular (removal and replacement of the crystalline lens or some type of treatment on the crystalline lens itself). There are however a number of limitations and considerations that have limited the widespread acceptance of surgical correction of presbyopia. Each surgical strategy presents its own unique set of advantages and disadvantages. For example, lens removal and replacement with an intraocular lens may not be preferable in a young patient with presbyopia without a refractive error. Similarly treatment on the crystalline lens may not be a suitable choice for a patient with early signs of cataract. This article is a review of the options available and those that are in development stages and are likely to be available in the near future for the surgical correction of presbyopia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The Bonferroni correction adjusts probability (p) values because of the increased risk of a type I error when making multiple statistical tests. The routine use of this test has been criticised as deleterious to sound statistical judgment, testing the wrong hypothesis, and reducing the chance of a type I error but at the expense of a type II error; yet it remains popular in ophthalmic research. The purpose of this article was to survey the use of the Bonferroni correction in research articles published in three optometric journals, viz. Ophthalmic & Physiological Optics, Optometry & Vision Science, and Clinical & Experimental Optometry, and to provide advice to authors contemplating multiple testing. RECENT FINDINGS: Some authors ignored the problem of multiple testing while others used the method uncritically with no rationale or discussion. A variety of methods of correcting p values were employed, the Bonferroni method being the single most popular. Bonferroni was used in a variety of circumstances, most commonly to correct the experiment-wise error rate when using multiple 't' tests or as a post-hoc procedure to correct the family-wise error rate following analysis of variance (anova). Some studies quoted adjusted p values incorrectly or gave an erroneous rationale. SUMMARY: Whether or not to use the Bonferroni correction depends on the circumstances of the study. It should not be used routinely and should be considered if: (1) a single test of the 'universal null hypothesis' (Ho ) that all tests are not significant is required, (2) it is imperative to avoid a type I error, and (3) a large number of tests are carried out without preplanned hypotheses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synchronization scheme for a two-channel phase sensitive amplifier is implemented based on the injection-locking of single InP quantum-dash mode-locked laser. Error free performance with penalty <1 dB is demonstrated for both channels. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For more than a century it has been known that the eye is not a perfect optical system, but rather a system that suffers from aberrations beyond conventional prescriptive descriptions of defocus and astigmatism. Whereas traditional refraction attempts to describe the error of the eye with only two parameters, namely sphere and cylinder, measurements of wavefront aberrations depict the optical error with many more parameters. What remains questionable is the impact these additional parameters have on visual function. Some authors have argued that higher-order aberrations have a considerable effect on visual function and in certain cases this effect is significant enough to induce amblyopia. This has been referred to as ‘higher-order aberration-associated amblyopia’. In such cases, correction of higher-order aberrations would not restore visual function. Others have reported that patients with binocular asymmetric aberrations display an associated unilateral decrease in visual acuity and, if the decline in acuity results from the aberrations alone, such subjects may have been erroneously diagnosed as amblyopes. In these cases, correction of higher-order aberrations would restore visual function. This refractive entity has been termed ‘aberropia’. In order to investigate these hypotheses, the distribution of higher-order aberrations in strabismic, anisometropic and idiopathic amblyopes, and in a group of visual normals, was analysed both before and after wavefront-guided laser refractive correction. The results show: (i) there is no significant asymmetry in higher-order aberrations between amblyopic and fixing eyes prior to laser refractive treatment; (ii) the mean magnitude of higher-order aberrations is similar within the amblyopic and visually normal populations; (iii) a significant improvement in visual acuity can be realised for adult amblyopic patients utilising wavefront-guided laser refractive surgery and a modest increase in contrast sensitivity was observed for the amblyopic eye of anisometropes following treatment (iv) an overall trend towards increased higher-order aberrations following wavefront-guided laser refractive treatment was observed for both visually normal and amblyopic eyes. In conclusion, while the data do not provide any direct evidence for the concepts of either ‘aberropia’ or ‘higher-order aberration-associated amblyopia’, it is clear that gains in visual acuity and contrast sensitivity may be realised following laser refractive treatment of the amblyopic adult eye. Possible mechanisms by which these gains are realised are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the relationship between pupil diameter and refractive error and how refractive correction, target luminance, and accommodation modulate this relationship. Methods: Sixty emmetropic, myopic, and hyperopic subjects (age range, 18 to 35 years) viewed an illuminated target (luminance: 10, 100, 200, 400, 1000, 2000, and 4100 cd/m2) within a Badal optical system, at 0 diopters (D) and −3 D vergence, with and without refractive correction. Refractive error was corrected using daily disposable contact lenses. Pupil diameter and accommodation were recorded continuously using a commercially available photorefractor. Results: No significant difference in pupil diameter was found between the refractive groups at 0 D or −3 D target vergence, in the corrected or uncorrected conditions. As expected, pupil diameter decreased with increasing luminance. Target vergence had no significant influence on pupil diameter. In the corrected condition, at 0 D target vergence, the accommodation response was similar in all refractive groups. At −3 D target vergence, the emmetropic and myopic groups accommodated significantly more than the hyperopic group at all luminance levels. There was no correlation between accommodation response and pupil diameter or refractive error in any refractive group. In the uncorrected condition, the accommodation response was significantly greater in the hyperopic group than in the myopic group at all luminance levels, particularly for near viewing. In the hyperopic group, the accommodation response was significantly correlated with refractive error but not pupil diameter. In the myopic group, accommodation response level was not correlated with refractive error or pupil diameter. Conclusions: Refractive error has no influence on pupil diameter, irrespective of refractive correction or accommodative demand. This suggests that the pupil is controlled by the pupillary light reflex and is not driven by retinal blur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.