46 resultados para project cost engineering
Resumo:
This thesis describes the design and engineering of a pressurised biomass gasification test facility. A detailed examination of the major elements within the plant has been undertaken in relation to specification of equipment, evaluation of options and final construction. The retrospective project assessment was developed from consideration of relevant literature and theoretical principles. The literature review includes a discussion on legislation and applicable design codes. From this analysis, each of the necessary equipment units was reviewed and important design decisions and procedures highlighted and explored. Particular emphasis was placed on examination of the stringent demands of the ASME VIII design codes. The inter-relationship of functional units was investigated and areas of deficiency, such as biomass feeders and gas cleaning, have been commented upon. Finally, plant costing was summarized in relation to the plant design and proposed experimental programme. The main conclusion drawn from the study is that pressurised gasification of biomass is far more difficult and expensive to support than atmospheric gasification. A number of recommendations have been made regarding future work in this area.
Resumo:
Most parametric software cost estimation models used today evolved in the late 70's and early 80's. At that time, the dominant software development techniques being used were the early 'structured methods'. Since then, several new systems development paradigms and methods have emerged, one being Jackson Systems Development (JSD). As current cost estimating methods do not take account of these developments, their non-universality means they cannot provide adequate estimates of effort and hence cost. In order to address these shortcomings two new estimation methods have been developed for JSD projects. One of these methods JSD-FPA, is a top-down estimating method, based on the existing MKII function point method. The other method, JSD-COCOMO, is a sizing technique which sizes a project, in terms of lines of code, from the process structure diagrams and thus provides an input to the traditional COCOMO method.The JSD-FPA method allows JSD projects in both the real-time and scientific application areas to be costed, as well as the commercial information systems applications to which FPA is usually applied. The method is based upon a three-dimensional view of a system specification as opposed to the largely data-oriented view traditionally used by FPA. The method uses counts of various attributes of a JSD specification to develop a metric which provides an indication of the size of the system to be developed. This size metric is then transformed into an estimate of effort by calculating past project productivity and utilising this figure to predict the effort and hence cost of a future project. The effort estimates produced were validated by comparing them against the effort figures for six actual projects.The JSD-COCOMO method uses counts of the levels in a process structure chart as the input to an empirically derived model which transforms them into an estimate of delivered source code instructions.
Resumo:
In Great Britain and Brazil healthcare is free at the point of delivery and based study only on citizenship. However, the British NHS is fifty-five years old and has undergone extensive reforms. The Brazilian SUS is barely fifteen years old. This research investigated the middle management mediation role within hospitals comparing managerial planning and control using cost information in Great Britain and Brazil. This investigation was conducted in two stages entailing quantitative and qualitative techniques. The first stage was a survey involving managers of 26 NHS Trusts in Great Britain and 22 public hospitals in Brazil. The second stage consisted of interviews, 10 in Great Britain and 22 in Brazil, conducted in four selected hospitals, two in each country. This research builds on the literature by investigating the interaction of contingency theory and modes of governance in a cross-national study in terms of public hospitals. It further builds on the existing literature by measuring managerial dimensions related to cost information usefulness. The project unveils the practice involved in planning and control processes. It highlights important elements such as the use of predictive models and uncertainty reduction when planning. It uncovers the different mechanisms employed on control processes. It also depicts that planning and control within British hospitals are structured procedures and guided by overall goals. In contrast, planning and control processes in Brazilian hospitals are accidental, involving more ad hoc actions and a profusion of goals. The clinicians in British hospitals have been integrated into the management hierarchy. Their use of cost information in planning and control processes reflects this integration. However, in Brazil, clinicians have been shown to operate more independently and make little use of cost information but the potential signalled for cost information use is seen to be even greater than that of their British counterparts.
Resumo:
Much of the geometrical data relating to engineering components and assemblies is stored in the form of orthographic views, either on paper or computer files. For various engineering applications, however, it is necessary to describe objects in formal geometric modelling terms. The work reported in this thesis is concerned with the development and implementation of concepts and algorithms for the automatic interpretation of orthographic views as solid models. The various rules and conventions associated with engineering drawings are reviewed and several geometric modelling representations are briefly examined. A review of existing techniques for the automatic, and semi-automatic, interpretation of engineering drawings as solid models is given. A new theoretical approach is then presented and discussed. The author shows how the implementation of such an approach for uniform thickness objects may be extended to more general objects by introducing the concept of `approximation models'. Means by which the quality of the transformations is monitored, are also described. Detailed descriptions of the interpretation algorithms and the software package that were developed for this project are given. The process is then illustrated by a number of practical examples. Finally, the thesis concludes that, using the techniques developed, a substantial percentage of drawings of engineering components could be converted into geometric models with a specific degree of accuracy. This degree is indicative of the suitability of the model for a particular application. Further work on important details is required before a commercially acceptable package is produced.
Resumo:
The work described in the following pages was carried out at various sites in the Rod Division of the Delta Metal Company. Extensive variation in the level of activity in the industry during the years 1974 to I975 had led to certain inadequacies being observed 1n the traditional cost control procedure. In an attempt to remedy this situation it was suggested that a method be found of constructing a system to improve the flexibility of cost control procedures. The work involved an assimilation of the industrial and financial environment via pilot studies which would later prove invaluable to home in on the really interesting and important areas. Weaknesses in the current systems which came to light made the methodology of data collection and the improvement of cost control and profit planning procedures easier to adopt. Because of the requirements of the project to investigate the implications of Cost behaviour for profit planning and control, the next stage of the research work was to utilise the on-site experience to examine at a detailed level the nature of cost behaviour. The analysis of factory costs then showed that certain costs, which were the most significant exhibited a stable relationship with respect to some known variable, usually a specific measure of Output. These costs were then formulated in a cost model, to establish accurate standards in a complex industrial setting in order to provide a meaningful comparison against which to judge actual performance. The necessity of a cost model was •reinforced by the fact that the cost behaviour found to exist was, in the main, a step function, and this complex cost behaviour, the traditional cost and profit planning procedures could not possibly incorporate. Already implemented from this work is the establishment of the post of information officer to co-ordinate data collection and information provision.
Resumo:
The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.
Resumo:
Off-highway motive plant equipment is costly in capital outlay and maintenance. To reduce these overheads and increase site safety and workrate, a technique of assessing and limiting the velocity of such equipment is required. Due to the extreme environmental conditions met on such sites, conventional velocity measurement techniques are inappropriate. Ogden Electronics Limited were formed specifically to manufacture a motive plant safety system incorporating a speed sensor and sanction unit; to date, the only such commercial unit available. However, problems plague the reliability, accuracy and mass production of this unit. This project assesses the company's exisiting product, and in conjunction with an appreciation of the company history and structure, concludes that this unit is unsuited to its intended application. Means of improving the measurement accuracy and longevity of this unit, commensurate with the company's limited resources and experience, are proposed, both for immediate retrofit and for longer term use. This information is presented in the form of a number of internal reports for the company. The off-highway environment is examined; and in conjunction with an evaluation of means of obtaining a returned signal, comparisons of processing techniques, and on-site gathering of previously unavailable data, preliminary designs for an alternative product are drafted. Theoretical aspects are covered by a literature review of ground-pointing radar, vehicular radar, and velocity measuring systems. This review establishes and collates the body of knowledge in areas previously considered unrelated. Based upon this work, a new design is proposed which is suitable for incorporation into the existing company product range. Following production engineering of the design, five units were constructed, tested and evaluated on-site. After extended field trials, this design has shown itself to possess greater accuracy, reliability and versatility than the existing sensor, at a lower unit cost.
Resumo:
The work described was carried out as part of a collaborative Alvey software engineering project (project number SE057). The project collaborators were the Inter-Disciplinary Higher Degrees Scheme of the University of Aston in Birmingham, BIS Applied Systems Ltd. (BIS) and the British Steel Corporation. The aim of the project was to investigate the potential application of knowledge-based systems (KBSs) to the design of commercial data processing (DP) systems. The work was primarily concerned with BIS's Structured Systems Design (SSD) methodology for DP systems development and how users of this methodology could be supported using KBS tools. The problems encountered by users of SSD are discussed and potential forms of computer-based support for inexpert designers are identified. The architecture for a support environment for SSD is proposed based on the integration of KBS and non-KBS tools for individual design tasks within SSD - The Intellipse system. The Intellipse system has two modes of operation - Advisor and Designer. The design, implementation and user-evaluation of Advisor are discussed. The results of a Designer feasibility study, the aim of which was to analyse major design tasks in SSD to assess their suitability for KBS support, are reported. The potential role of KBS tools in the domain of database design is discussed. The project involved extensive knowledge engineering sessions with expert DP systems designers. Some practical lessons in relation to KBS development are derived from this experience. The nature of the expertise possessed by expert designers is discussed. The need for operational KBSs to be built to the same standards as other commercial and industrial software is identified. A comparison between current KBS and conventional DP systems development is made. On the basis of this analysis, a structured development method for KBSs in proposed - the POLITE model. Some initial results of applying this method to KBS development are discussed. Several areas for further research and development are identified.
Resumo:
Numerous techniques have been developed to control cost and time of construction projects. However, there is limited research on issues surrounding the practical usage of these techniques. To address this, a survey was conducted on the top 150 construction companies and 100 construction consultancies in the UK aimed at identifying common project control practices and factors inhibiting effective project control in practice. It found that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.
Resumo:
As a global profession, engineering is integral to the maintenance and further development of society. Indeed, contemporary social problems requiring engineering solutions are not only a consequence of natural and ‘manmade’ disasters (such as the Japanese earthquake or the oil leakage in the Gulf of Mexico) but also encapsulate 21st Century dilemmas around sustainability, poverty and pollution [2,6,7]. Given the complexity of such problems and the constant need for innovation, the demand for engineering education to provide a ready supply of suitably qualified engineering graduates, able to make innovative decisions has never been higher [3,5]. Bearing this in mind, and taking account problems of attrition in engineering education [1,6,4] innovation in the way in which the curriculum is developed and delivered is crucial. CDIO [Conceive, Design, Implement, Operate] provides a potentially ground-breaking solution to such dilemmas. Aimed at equipping students with practical engineering skills supported by the necessary theoretical background, CDIO could potentially change the way engineering is perceived and experienced within higher education. Aston University introduced CDIO into its Mechanical Engineering and Design programmes in October 2011. From its induction, engineering education researchers have ‘shadowed’ the staff responsible for developing and teaching the programme. Utilising an Action Research Design, and adopting a mixed methodological research design, the researchers have worked closely with the teaching team to critically reflect on the processes involved in introducing CDIO into the curriculum. Concurrently, research has been conducted to capture students’ perspectives of CDIO. In evaluating the introduction of CDIO at Aston, the researchers have developed a distinctive research strategy with which to evaluate CDIO. It is the emergent findings from this research that form the basis of this paper. Although early-on in its development CDIO is making a significant difference to engineering education at the University. The paper draws attention to pedagogical, practical and professional issues – discussing each one in turn and in doing so critically analysing the value of CDIO from academic, student and industrial perspectives. The paper concludes by noting that whilst CDIO represents a forwardthinking approach to engineering education, the need for constant innovation in learning and teaching should not be forgotten. Indeed, engineering education needs to put itself at the forefront of pedagogic practice. Providing all-rounded engineers, ready to take on the challenges of the 21st Century!
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether (DME) gas adsorptive separation and steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). Hydrogen is currently receiving increasing interest as an alternative source of clean energy and has high potential applications, including the transportation sector and power generation. Computational fluid dynamic (CFD) modelling has attracted considerable recognition in the engineering sector consequently leading to using it as a tool for process design and optimisation in many industrial processes. In most cases, these processes are difficult or expensive to conduct in lab scale experiments. The CFD provides a cost effective methodology to gain detailed information up to the microscopic level. The main objectives in this project are to: (i) develop a predictive model using ANSYS FLUENT (CFD) commercial code to simulate the flow hydrodynamics, mass transfer, reactions and heat transfer in a large scale dual fluidized bed system for combined gas separation and steam reforming processes (ii) implement a suitable adsorption models in the CFD code, through a user defined function, to predict selective separation of a gas from a mixture (iii) develop a model for dimethyl ether steam reforming (DME-SR) to predict hydrogen production (iv) carry out detailed parametric analysis in order to establish ideal operating conditions for future industrial application. The project has originated from a real industrial case problem in collaboration with the industrial partner Dow Corning (UK) and jointly funded by the Engineering and Physical Research Council (UK) and Dow Corning. The research examined gas separation by adsorption in a bubbling bed, as part of a dual fluidized bed system. The adsorption process was simulated based on the kinetics derived from the experimental data produced as part of a separate PhD project completed under the same fund. The kinetic model was incorporated in FLUENT CFD tool as a pseudo-first order rate equation; some of the parameters for the pseudo-first order kinetics were obtained using MATLAB. The modelling of the DME adsorption in the designed bubbling bed was performed for the first time in this project and highlights the novelty in the investigations. The simulation results were analysed to provide understanding of the flow hydrodynamic, reactor design and optimum operating condition for efficient separation. Bubbling bed validation by estimation of bed expansion and the solid and gas distribution from simulation agreed well with trends seen in the literatures. Parametric analysis on the adsorption process demonstrated that increasing fluidizing velocity reduced adsorption of DME. This is as a result of reduction in the gas residence time which appears to have much effect compared to the solid residence time. The removal efficiency of DME from the bed was found to be more than 88%. Simulation of the DME-SR in FLUENT CFD was conducted using selected kinetics from literature and implemented in the model using an in-house developed user defined function. The validation of the kinetics was achieved by simulating a case to replicate an experimental study of a laboratory scale bubbling bed by Vicente et al [1]. Good agreement was achieved for the validation of the models, which was then applied in the DME-SR in the large scale riser section of the dual fluidized bed system. This is the first study to use the selected DME-SR kinetics in a circulating fluidized bed (CFB) system and for the geometry size proposed for the project. As a result, the simulation produced the first detailed data on the spatial variation and final gas product in such an industrial scale fluidized bed system. The simulation results provided insight in the flow hydrodynamic, reactor design and optimum operating condition. The solid and gas distribution in the CFB was observed to show good agreement with literatures. The parametric analysis showed that the increase in temperature and steam to DME molar ratio increased the production of hydrogen due to the increased DME conversions, whereas the increase in the space velocity has been found to have an adverse effect. Increasing temperature between 200 oC to 350 oC increased DME conversion from 47% to 99% while hydrogen yield increased substantially from 11% to 100%. The CO2 selectivity decreased from 100% to 91% due to the water gas shift reaction favouring CO at higher temperatures. The higher conversions observed as the temperature increased was reflected on the quantity of unreacted DME and methanol concentrations in the product gas, where both decreased to very low values of 0.27 mol% and 0.46 mol% respectively at 350 °C. Increasing the steam to DME molar ratio from 4 to 7.68 increased the DME conversion from 69% to 87%, while the hydrogen yield increased from 40% to 59%. The CO2 selectivity decreased from 100% to 97%. The decrease in the space velocity from 37104 ml/g/h to 15394 ml/g/h increased the DME conversion from 87% to 100% while increasing the hydrogen yield from 59% to 87%. The parametric analysis suggests an operating condition for maximum hydrogen yield is in the region of 300 oC temperatures and Steam/DME molar ratio of 5. The analysis of the industrial sponsor’s case for the given flow and composition of the gas to be treated suggests that 88% of DME can be adsorbed from the bubbling and consequently producing 224.4t/y of hydrogen in the riser section of the dual fluidized bed system. The process also produces 1458.4t/y of CO2 and 127.9t/y of CO as part of the product gas. The developed models and parametric analysis carried out in this study provided essential guideline for future design of DME-SR at industrial level and in particular this work has been of tremendous importance for the industrial collaborator in order to draw conclusions and plan for future potential implementation of the process at an industrial scale.
Resumo:
The principle theme of this thesis is the advancement and expansion of ophthalmic research via the collaboration between professional Engineers and professional Optometrists. The aim has been to develop new and novel approaches and solutions to contemporary problems in the field. The work is sub divided into three areas of investigation; 1) High technology systems, 2) Modification of current systems to increase functionality, and 3) Development of smaller more portable and cost effective systems. High Technology Systems: A novel high speed Optical Coherence Tomography (OCT) system with integrated simultaneous high speed photography was developed achieving better operational speed than is currently available commercially. The mechanical design of the system featured a novel 8 axis alignment system. A full set of capture, analysis, and post processing software was developed providing custom analysis systems for ophthalmic OCT imaging, expanding the current capabilities of the technology. A large clinical trial was undertaken to test the dynamics of contact lens edge interaction with the cornea in-vivo. The interaction between lens edge design, lens base curvature, post insertion times and edge positions was investigated. A novel method for correction of optical distortion when assessing lens indentation was also demonstrated. Modification of Current Systems: A commercial autorefractor, the WAM-5500, was modified with the addition of extra hardware and a custom software and firmware solution to produce a system that was capable of measuring dynamic accommodative response to various stimuli in real time. A novel software package to control the data capture process was developed allowing real time monitoring of data by the practitioner, adding considerable functionality of the instrument further to the standard system. The device was used to assess the accommodative response differences between subjects who had worn UV blocking contact lens for 5 years, verses a control group that had not worn UV blocking lenses. While the standard static measurement of accommodation showed no differences between the two groups, it was determined that the UV blocking group did show better accommodative rise and fall times (faster), thus demonstrating the benefits of the modification of this commercially available instrumentation. Portable and Cost effective Systems: A new instrument was developed to expand the capability of the now defunct Keeler Tearscope. A device was developed that provided a similar capability in allowing observation of the reflected mires from the tear film surface, but with the added advantage of being able to record the observations. The device was tested comparatively with the tearscope and other tear film break-up techniques, demonstrating its potential. In Conclusion: This work has successfully demonstrated the advantages of interdisciplinary research between engineering and ophthalmic research has provided new and novel instrumented solutions as well as having added to the sum of scientific understanding in the ophthalmic field.
Resumo:
Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyzes a case study of wireless network implementation in a politically sensitive environment and seeks to gain practical insights for IT managers in today’s networked economy. The case evolved around an urgent decision to implement wireless networks that were a radical replacement for the existing wired network infrastructure. Although the wireless network infrastructure was well calculated as being considerably cost-efficient, inexperienced administrators and IT department failed to consult various involved stakeholders. Consequently, unintended results of wireless network implementation entangled with the cost efficiency of technology outcome and in turn undermined the objectives and achievement of the initial project plan. Drawing from social perspectives, this case study challenges traditionally dominant perspectives of technology efficiency and summarizes several lessons that could help IT managers and policy makers to better strategize ICT in general, and wireless networks in particular.
Resumo:
Starting with the research question, "How can the Primary School Curriculum be developed so as to spark Children's Engineering Imaginations from an early age?" this paper sets out to critically analyse the issues around embedding Engineering in the Primary School Curriculum from the age of 5 years. Findings from an exploratory research project suggest that in order to promote the concept of Engineering Education to potential university students (and in doing so begin to address issues around recruitment / retention within Engineering) there is a real need to excite and engage children with the subject from a young age. Indeed, it may be argued that within today's digital society, the need to encourage children to engage with Engineering is vital to the future sustainable development of our society. Whilst UK Government policy documents highlight the value of embedding Engineering into the school curriculum there is little or no evidence to suggest that Engineering has been successfully embedded into the elementary level school curriculum. Building on the emergent findings of the first stage of a longitudinal study, this paper concludes by arguing that Engineering could be embedded into the curriculum through innovative pedagogical approaches which contextualise project-based learning experiences within more traditional subjects including science, history, geography, literacy and numeracy.