46 resultados para preconditioning convection-diffusion equation matrix equation
Resumo:
Pack aluminide coating is a useful method for conferring oxidation resistance on nickel-base superalloys. Nominally, these coatings have a matrix composed of a Ni-Al based B2-type phase (commonly denoted as Β). However, following high-temperature exposure in oxidative envi-ronments, aluminum is depleted from the coating. Aluminum depletion in turn, leads to de-stabilization of the Β phase, resulting in the formation of a characteristic lathlike Β-derivative microstructure. This article presents a transmission electron microscopy study of the formation of the lathlike Β-derivative microstructure using bulk nickel aluminides as model alloys. In the bulk nickel aluminides, the lathlike microstructure has been found to correspond to two distinct components: L10-type martensite and a new Β derivative. The new Β derivative is characterized and the conditions associated with the presence of this feature are identified and compared with those leading to the formation of the L10 martensitic phase. © 1995 The Minerals, Metals & Material Society.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A version of the thermodynamic perturbation theory based on a scaling transformation of the partition function has been applied to the statistical derivation of the equation of state in a highpressure region. Two modifications of the equations of state have been obtained on the basis of the free energy functional perturbation series. The comparative analysis of the experimental PV T- data on the isothermal compression for the supercritical fluids of inert gases has been carried out. © 2012.
Resumo:
The method for the computation of the conditional probability density function for the nonlinear Schrödinger equation with additive noise is developed. We present in a constructive form the conditional probability density function in the limit of small noise and analytically derive it in a weakly nonlinear case. The general theory results are illustrated using fiber-optic communications as a particular, albeit practically very important, example.
Resumo:
The theory and experimental applications of optical Airy beams are in active development recently. The Airy beams are characterised by very special properties: they are non-diffractive and propagate along parabolic trajectories. Among the striking applications of the optical Airy beams are optical micro-manipulation implemented as the transport of small particles along the parabolic trajectory, Airy-Bessel linear light bullets, electron acceleration by the Airy beams, plasmonic energy routing. The detailed analysis of the mathematical aspects as well as physical interpretation of the electromagnetic Airy beams was done by considering the wave as a function of spatial coordinates only, related by the parabolic dependence between the transverse and the longitudinal coordinates. Their time dependence is assumed to be harmonic. Only a few papers consider a more general temporal dependence where such a relationship exists between the temporal and the spatial variables. This relationship is derived mostly by applying the Fourier transform to the expressions obtained for the harmonic time dependence or by a Fourier synthesis using the specific modulated spectrum near some central frequency. Spatial-temporal Airy pulses in the form of contour integrals is analysed near the caustic and the numerical solution of the nonlinear paraxial equation in time domain shows soliton shedding from the Airy pulse in Kerr medium. In this paper the explicitly time dependent solutions of the electromagnetic problem in the form of time-spatial pulses are derived in paraxial approximation through the Green's function for the paraxial equation. It is shown that a Gaussian and an Airy pulse can be obtained by applying the Green's function to a proper source current. We emphasize that the processes in time domain are directional, which leads to unexpected conclusions especially for the paraxial approximation.
Resumo:
A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.
Resumo:
The determination of the displacement and the space-dependent force acting on a vibrating structure from measured final or time-average displacement observation is thoroughly investigated. Several aspects related to the existence and uniqueness of a solution of the linear but ill-posed inverse force problems are highlighted. After that, in order to capture the solution a variational formulation is proposed and the gradient of the least-squares functional that is minimized is rigorously and explicitly derived. Numerical results obtained using the Landweber method and the conjugate gradient method are presented and discussed illustrating the convergence of the iterative procedures for exact input data. Furthermore, for noisy data the semi-convergence phenomenon appears, as expected, and stability is restored by stopping the iterations according to the discrepancy principle criterion once the residual becomes close to the amount of noise. The present investigation will be significant to researchers concerned with wave propagation and control of vibrating structures.
Resumo:
We propose and investigate an application of the method of fundamental solutions (MFS) to the radially symmetric and axisymmetric backward heat conduction problem (BHCP) in a solid or hollow cylinder. In the BHCP, the initial temperature is to be determined from the temperature measurements at a later time. This is an inverse and ill-posed problem, and we employ and generalize the MFS regularization approach [B.T. Johansson and D. Lesnic, A method of fundamental solutions for transient heat conduction, Eng. Anal. Boundary Elements 32 (2008), pp. 697–703] for the time-dependent heat equation to obtain a stable and accurate numerical approximation with small computational cost.
Resumo:
A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.
Resumo:
Diffusion NMR is a potentially routine tool in the analysis of mixtures, from industrial and synthetic outputs to natural products. However, the technique struggles to resolve species of similar size. Matrix-assisted DOSY offers a flexible approach to resolving such ambiguities on the basis of the chemical structures involved and on their interactions with a larger co-solute or matrix. The use of chromatographic supports, surfactants and polymers, in particular, is illustrated. The resolution of a wide range of different analyte mixtures, on the basis of differences in chemical structure and in stereochemistry, is demonstrated.
Resumo:
We present the derivation of a new master equation for active mode locking in lasers that fully takes into account the coherent effects of the light matter interaction through a peculiar adiabatic elimination technique. The coherent effects included in our model could be relevant to describe properly mode-locked semiconductor lasers where the standard Haus' Master Equation predictions show some discrepancy with respect to the experimental results and can be included in the modelling of other mode locking techniques too.