34 resultados para policing in transition
Resumo:
This paper conceptualises the enhancement of technological capability by firms, following international technology transfer, as an evolutionary process. During this process, the existing technological, managerial and other complementary resources may require restructuring. Since China is in transition from central planning to market orientation, the organisational and managerial practices of Chinese firms are different from those of international technology suppliers. Resourcebased and evolutionary theories of the firm, which provide insights into the evolution of structures, mechanisms, skills, experiences and technical know-how, have been applied to outline the processes of acquiring technological capability. Selected case studies have been used to illustrate the issues and the framework provides guide for further empirical work.
Resumo:
In this chapter, selected results obtained so far on Fe(III) spin crossover compounds are summarized and discussed. Fe(III) spin transition materials of ligands containing chalcogen donor atoms are considered with emphasis on those of N,N-disubstituted-dithiocarbamates, N,N-disubstituted-XY-carbamates (XY=SO, SSe, SeSe), X-xanthates (X=O, S), monothio-β-diketonates and X-semicarbazones (X=S, Se). In addition, attention is directed to Fe(III) spin crossover systems of multidentate Schiff base-type ligands. Examples of spin inter-conversion in Fe(III) compounds induced by light irradiation are given.
Resumo:
In this chapter, selected results obtained so far on Fe(II) spin crossover compounds of 1,2,4-triazole, isoxazole and tetrazole derivatives are summarized and analysed. These materials include the only compounds known to have Fe(II)N6 spin crossover chromophores consisting of six chemically identical heterocyclic ligands. Particular attention is paid to the coordination modes for substituted 1,2,4-triazole derivatives towards Fe(II) resulting in polynuclear and mononuclear compounds exhibiting Fe(II) spin transitions. Furthermore, the physical properties of mononuclear Fe(II) isoxazole and 1-alkyl-tetrazole compounds are discussed in relation to their structures. It will also be shown that the use of α,β- and α,ω-bis(tetrazol-1-yl)alkane type ligands allowed a novel strategy towards obtaining polynuclear Fe(II) spin crossover materials.