34 resultados para partial least square (PLS)
Resumo:
Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-base multivariate statistical approach to the quantitative prediction of peptide binding to major histocom-patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive,cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203,HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401and HLA-DRB* 0701).
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
This paper analyzes the relationship between freight accessibility and logistics employment in the US. It develops an accessibility measure relevant for logistics companies based on a gravity model. This allows for an analysis of the accessibility of US counties focusing on four different modes of transportation: road, rail, air, and maritime. Using a Partial Least Squares model, these four different freight accessibility measures are combined into two constructs, continental and intercontinental freight accessibility, and related to logistics employment. Results show that highly accessible counties attract more logistics employment than other counties. The analyses show that it is very important to control for the effect of the county population on both freight accessibility and logistics employment. While county population explains the most variation in the logistics employment per county, there is a significant relationship between freight accessibility and logistics employment, when controlling for this effect.
Resumo:
Purpose – The purpose of this empirical paper is to investigate internal marketing from a behavioural perspective. The impact of internal marketing behaviours, operationalised as an internal market orientation (IMO), on employees' marketing and other in/role behaviours (IRB) were examined. Design/methodology/approach – Survey data measuring IMO, market orientation and a range of constructs relevant to the nomological network in which they are embedded were collected from the UK retail managers. These were tested to establish their psychometric properties and the conceptual model was analysed using structural equations modelling, employing a partial least squares methodology. Findings – IMO has positive consequences for employees' market/oriented and other IRB. These, in turn, influence marketing success. Research limitations/implications – The paper provides empirical support for the long/held assumption that internal and external marketing are related and that organisations should balance their external focus with some attention to employees. Future research could measure the attitudes and behaviours of managers, employees and customers directly and explore the relationships between them. Practical implications – Firm must ensure that they do not put the needs of their employees second to those of managers and shareholders; managers must develop their listening skills and organisations must become more responsive to the needs of their employees. Originality/value – The paper contributes to the scarce body of empirical support for the role of internal marketing in services organisations. For researchers, this paper legitimises the study of internal marketing as a route to external market success; for managers, the study provides quantifiable evidence that focusing on employees' wants and needs impacts their behaviours towards the market. © 2010, Emerald Group Publishing Limited