81 resultados para optical measurement
Resumo:
Interferometric sensors using optical fibers as a transduction medium have been shown to be sensitive to a variety of physical measurands. A result of this is that the resolution of a system designed to sense strain, for example, may be compromised by fluctuations in the temperature of the environment. The possibility of simultaneously determining the strain and temperature applied to the same piece of highly birefringent fiber is discussed. Second-order effects are shown to be important for long sensing lengths or in the presence of high strains or temperature changes. The results of experiments carried out to verify the theoretical predictions are also described.
Resumo:
A novel technique for determining the polarisation mode dispersion in optical fibres is described. The technique makes use of a sinusoidally frequency modulated source, and is applied to the measurement of the beat length of highly birefringent monomode fibre. The temporal delay between the two modes of the fibre is measured with a resolution of approximately ±0.6 ps.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm · m for curvature and 2.2 × 10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
High-sensitivity optical chemsensors have been implemented by exploiting fibre Bragg grating structures UV-inscribed in D-shape, single-mode and multimode fibres and post-sensitized by hydrofluoric acid (HF) etching treatment. We have demonstrated that the Bragg grating structures which are intrinsically insensitive to chemicals can be sensitized by effective etching. All etched devices possess refractive index sensing capability that offers an encoding function to chemical concentrations. Most etched devices have been used to measure the concentrations of sugar solutions, showing a potential capability of detecting concentration changes as small as 0.1–0.5%.
Resumo:
We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.
Resumo:
This thesis describes an investigation into methods for controlling the mode distribution in multimode optical fibres. The major contributions presented in this thesis are summarised below. Emerging standards for Gigabit Ethernet transmission over multimode optical fibre have led to a resurgence of interest in the precise control, and specification, of modal launch conditions. In particular, commercial LED and OTDR test equipment does not, in general, comply with these standards. There is therefore a need for mode control devices, which can ensure compliance with the standards. A novel device consisting of a point-load mode-scrambler in tandem with a mode-filter is described in this thesis. The device, which has been patented, may be tuned to achieve a wide range of mode distributions and has been implemented in a ruggedised package for field use. Various other techniques for mode control have been described in this work, including the use of Long Period Gratings and air-gap mode-filters. Some of the methods have been applied to other applications, such as speckle suppression and in sensor technology. A novel, self-referencing, sensor comprising two modal groups in the Mode Power Distribution has been designed and tested. The feasibility of a two-channel Mode Group Diversity Multiplexed system has been demonstrated over 985m. A test apparatus for measuring mode distribution has been designed and constructed. The apparatus consists of a purpose-built video microscope, and comprehensive control and analysis software written in Visual Basic. The system may be fitted with a Silicon camera or an InGaAs camera, for measurement in the 850nm and 130nm transmission windows respectively. A limitation of the measurement method, when applied to well-filled fibres, has been identified and an improvement to the method has been proposed, based on modelled Laguerre Gauss field solutions.
Resumo:
This thesis presents experimental investigations of the use of semiconductor optical amplifiers in a nonlinear loop mirror (SOA-NOLM) and its application in all-optical processing. The techniques used are mainly experimental and are divided into three major applications. Initially the semiconductor optical amplifier, SOA, is experimentally characterised and the optimum operating condition is identified. An interferometric switch based on a Sagnac loop with the SOA as the nonlinear element is employed to realise all-optical switching. All-optical switching is a very attractive alternative to optoelectronic conversion because it avoids the conversion from the optical to the electronic domain and back again. The first major investigation involves a carrier suppressed return to zero, CSRZ, format conversion and transmission. This study is divided into single channel and four channel WDM respectively. The optical bandwidth which limits the conversion is investigated. The improvement of the nonlinear tolerance in the CSRZ transmission is shown which shows the suitability of this format for enhancing system performance. Second, a symmetrical switching window is studied in the SOA-NOLM where two similar control pulses are injected into the SOA from opposite directions. The switching window is symmetric when these two control pulses have the same power and arrive at the same time in the SOA. Finally, I study an all-optical circulating shift register with an inverter. The detailed behaviour of the blocks of zeros and ones has been analysed in terms of their transient measurement. Good agreement with a simple model of the shift register is obtained. The transient can be reduced but it will affect the extinction ratio of the pulses.
Resumo:
We measured the optical linewidths of a passively mode-locked quantum dot laser and show that, in agreement with theoretical predictions, the modal linewidth exhibits a parabolic dependence with the mode optical frequency. The minimum linewidth follows a Schawlow-Townes behavior with a rebroadening at high power. In addition, the slope of the parabola is proportional to the RF linewidth of the laser and can therefore provide a direct measurement of the timing jitter. Such a measurement could be easily applied to mode-locked semiconductor lasers with a fast repetition rate where the RF linewidth cannot be directly measured.
Resumo:
We demonstrate a novel time-resolved Q-factor measurement technique and demonstrate its application in the analysis of optical packet switching systems with high information spectral density. For the first time, we report the time-resolved Q-factor measurement of 42.6 Gbit/s AM-PSK and DQPSK modulated packets, which were generated by a SGDBR laser under wavelength switching. The time dependent degradation of Q-factor performance during the switching transient was analyzed and was found to be correlated with different laser switching characteristics in each case.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.
Resumo:
Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.
Resumo:
A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.
Resumo:
Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.