45 resultados para non-local filtering
Resumo:
Starting from the exploration of the common features related to a postcolonial and feminist analysis, I will attempt to establish new relationships and to open up new perspectives within the cultural exchanges between the two nations, Galicia and Australia, within a global world. On the one hand, this will be new relationships in favour of a non-sexist language which contributes to overcoming gender discrimination; and on the other hand, new relationships which favour a re-evaluation of voices which have been silenced by hegemonic and centralised discourses.
Resumo:
Purpose: Although significant amounts of vertical misalignment could have a noticeable effect on visual performance, there is no conclusive evidence about the effect of very small amount of vertical disparity on stereopsis and binocular vision. Hence, the aim of this study was to investigate the effects of induced vertical disparity on local and global stereopsis at near. Materials and Methods: Ninety participants wearing best-corrected refraction had local and global stereopsis tested with 0.5 and 1.0 prism diopter (Δ) vertical prism in front of their dominant and non-dominant eye in turn. This was compared to local and global stereopsis in the same subjects without vertical prism. Data were analyzed in SPSS.17 software using the independent samples T and the repeated measures ANOVA tests. Results: Induced vertical disparity decreases local and global stereopsis. This reduction is greater when vertical disparity is induced in front of the non-dominant eye and affects global more than local stereopsis. Repeated measures ANOVA showed differences in the mean stereopsis between the different measured states for local and global values. Local stereopsis thresholds were reduced by 10s of arc or less on average with 1.0Δ of induced vertical prism in front of either eye. However, global stereopsis thresholds were reduced by over 100s of arc by the same 1.0Δ of induced vertical prism. Conclusion: Induced vertical disparity affects global stereopsis thresholds by an order of magnitude (or a factor of 10) more than local stereopsis. Hence, using a test that measures global stereopsis such as the TNO is more sensitive to vertical misalignment than a test such as the Stereofly that measures local stereopsis. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted.
Resumo:
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
Resumo:
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.
Resumo:
We find the probability distribution of the fluctuating parameters of a soliton propagating through a medium with additive noise. Our method is a modification of the instanton formalism (method of optimal fluctuation) based on a saddle-point approximation in the path integral. We first solve consistently a fundamental problem of soliton propagation within the framework of noisy nonlinear Schrödinger equation. We then consider model modifications due to in-line (filtering, amplitude and phase modulation) control. It is examined how control elements change the error probability in optical soliton transmission. Even though a weak noise is considered, we are interested here in probabilities of error-causing large fluctuations which are beyond perturbation theory. We describe in detail a new phenomenon of soliton collapse that occurs under the combined action of noise, filtering and amplitude modulation. © 2004 Elsevier B.V. All rights reserved.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
This thesis objective is to discover “How are informal decisions reached by screeners when filtering out undesirable job applications?” Grounded theory techniques were employed in the field to observe and analyse informal decisions at the source by screeners in three distinct empirical studies. Whilst grounded theory provided the method for case and cross-case analysis, literature from academic and non-academic sources was evaluated and integrated to strengthen this research and create a foundation for understanding informal decisions. As informal decisions in early hiring processes have been under researched, this thesis contributes to current knowledge in several ways. First, it locates the Cycle of Employment which enhances Robertson and Smith’s (1993) Selection Paradigm through the integration of stages that individuals occupy whilst seeking employment. Secondly, a general depiction of the Workflow of General Hiring Processes provides a template for practitioners to map and further develop their organisational processes. Finally, it highlights the emergence of the Locality Effect, which is a geographically driven heuristic and bias that can significantly impact recruitment and informal decisions. Although screeners make informal decisions using multiple variables, informal decisions are made in stages as evidence in the Cycle of Employment. Moreover, informal decisions can be erroneous as a result of a majority and minority influence, the weighting of information, the injection of inappropriate information and criteria, and the influence of an assessor. This thesis considers these faults and develops a basic framework of understanding informal decisions to which future research can be launched.
Resumo:
We have devised a general scheme that reveals multiple duality relations valid for all multi-channel Luttinger Liquids. The relations are universal and should be used for establishing phase diagrams and searching for new non-trivial phases in low-dimensional strongly correlated systems. The technique developed provides universal correspondence between scaling dimensions of local perturbations in different phases. These multiple relations between scaling dimensions lead to a connection between different inter-phase boundaries on the phase diagram. The dualities, in particular, constrain phase diagram and allow predictions of emergence and observation of new phases without explicit model-dependent calculations. As an example, we demonstrate the impossibility of non-trivial phase existence for fermions coupled to phonons in one dimension. © 2013 EPLA.
Resumo:
The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Methods - Ethical approval for the study was granted by both the local National Health Service (NHS) Research Ethics Committee (REC) and Aston University’s REC. Seven focus groups were conducted between October and December 2011 in medical or community settings within inner-city Birmingham (UK). Discussions were guided by a theme plan which was developed from key themes identified by a literature review and piloted via a Patient Consultation Group. Each focus group had between 3 and 7 participants. The groups were digitally recorded and subsequently transcribed verbatim. The transcriptions were then subjected to thematic analysis via constant comparison in order to identify emerging themes. Results - Participants recognised the pharmacist as an expert source of advice about prescribed medicines, a source they frequently felt a need to consult as a result of the inadequate supply of medicines information from the prescriber. However, an emerging theme was a perception that pharmacists had an oblique profit motive relating to the supply of generic medicines with frequent changes to the ‘brand’ of generic supplied being attributed to profit-seeking by pharmacists. Such changes had a negative impact on the patient’s perceived efficacy of the therapy which may make non-adherence more likely. Conclusions - Whilst pharmacists were recognised as medicines experts, trust in the pharmacist was undermined by frequent changes to generic medicines. Such changes have the potential to adversely impact adherence levels. Further, quantitative research is recommended to examine if such views are generalisable to the wider population of Birmingham and to establish if such views impact on adherence levels.
Resumo:
The educational process is characterised by multiple outcomes such as the achievement of academic results of various standards and non-academic achievements. This paper shows how data envelopment analysis (DEA) can be used to guide secondary schools to improved performance through role-model identification and target setting in a way which recognises the multi-outcome nature of the education process and reflects the relative desirability of improving individual outcomes. The approach presented in the paper draws from a DEA-based assessment of the schools of a local education authority carried out by the authors. Data from that assessment are used to illustrate the approach presented in the paper. (Key words: Data envelopment analysis, education, target setting.)
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
We use an augmented version of the UK Innovation Surveys 4–7 to explore firm-level and local area openness externalities on firms’ innovation performance. We find strong evidence of the value of external knowledge acquisition both through interactive collaboration and non-interactive contacts such as demonstration effects, copying or reverse engineering. Levels of knowledge search activity remain well below the private optimum, however, due perhaps to informational market failures. We also find strong positive externalities of openness resulting from the intensity of local interactive knowledge search—a knowledge diffusion effect. However, there are strong negative externalities resulting from the intensity of local non-interactive knowledge search—a competition effect. Our results provide support for local initiatives to support innovation partnering and counter illegal copying or counterfeiting. We find no significant relationship between either local labour quality or employment composition and innovative outputs.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.
Resumo:
Non-intrusive monitoring of health state of induction machines within industrial process and harsh environments poses a technical challenge. In the field, winding failures are a major fault accounting for over 45% of total machine failures. In the literature, many condition monitoring techniques based on different failure mechanisms and fault indicators have been developed where the machine current signature analysis (MCSA) is a very popular and effective method at this stage. However, it is extremely difficult to distinguish different types of failures and hard to obtain local information if a non-intrusive method is adopted. Typically, some sensors need to be installed inside the machines for collecting key information, which leads to disruption to the machine operation and additional costs. This paper presents a new non-invasive monitoring method based on GMRs to measure stray flux leaked from the machines. It is focused on the influence of potential winding failures on the stray magnetic flux in induction machines. Finite element analysis and experimental tests on a 1.5-kW machine are presented to validate the proposed method. With time-frequency spectrogram analysis, it is proven to be effective to detect several winding faults by referencing stray flux information. The novelty lies in the implement of GMR sensing and analysis of machine faults.