45 resultados para multicore programming
Resumo:
In this paper we study the generation of lace knitting stitch patterns by using genetic programming. We devise a genetic representation of knitting charts that accurately reflects their usage for hand knitting the pattern. We apply a basic evolutionary algorithm for generating the patterns, where the key of success is evaluation. We propose automatic evaluation of the patterns, without interaction with the user. We present some patterns generated by the method and then discuss further possibilities for bringing automatic evaluation closer to human evaluation. Copyright 2007 ACM.
Resumo:
We report experimental measurements of the reflection spectra of Bragg gratings inscribed in 4-core fibres under transverse loading. Broadening and splitting of the Bragg peaks from each core are observed as a function of load and fibre orientation.
Resumo:
Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.
Resumo:
We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement.
Resumo:
The 2011 National Student Survey (NSS) revealed that 40% of full-time students in England do not think that the feedback on their work has been helpful, even though 66% of these students agreed that the feedback was detailed and 62% of them agreed that the feedback has been prompt. Detailed feedback that is not considered helpful by students means a waste of tutors' time while students continue to struggle with their learning. What do students consider as helpful feedback? What are the qualities of helpful feedback? What are the preferred forms of feedback? How should tutors write feedback so that students will find it helpful? Can ICT help to improve the quality of feedback? In our ongoing search for answers to the above questions, we have trialled the use of a novel online application (eCAF) to assess programming coursework from engineering, mathematics and computing students and, through a survey, have collected their views on the feedback received. The survey reveals that most students prefer electronic feedback as given through eCAF, with verbal feedback ranked second and hand-written feedback ranked even lower. The survey also indicates that the feedback from some tutors is considered more helpful than others. We report on the detailed findings of the survey. By comparing the kinds of feedback given by each tutor who took part in the trial, we explore ways to improve the helpfulness of feedback on programming coursework in a bid to promote learning amongst engineering students.
Resumo:
We present experimental measurements of the peak splitting of the reflection spectra of fiber Bragg gratings as a result of birefringence induced by transverse loading of a multicore fiber. Measurements show that the splitting is a function of the applied load and the direction of the load relative to the azimuth of the fiber. A model for calculating the stress in the fiber that is due to an applied load is in good agreement with our experimental observations.
Resumo:
We study existence, stability, and dynamics of linear and nonlinear stationary modes propagating in radially symmetric multicore waveguides with balanced gain and loss. We demonstrate that, in general, the system can be reduced to an effective PT-symmetric dimer with asymmetric coupling. In the linear case, we find that there exist two modes with real propagation constants before an onset of the PT-symmetry breaking while other modes have always the propagation constants with nonzero imaginary parts. This leads to a stable (unstable) propagation of the modes when gain is localized in the core (ring) of the waveguiding structure. In the case of nonlinear response, we show that an interplay between nonlinearity, gain, and loss induces a high degree of instability, with only small windows in the parameter space where quasistable propagation is observed. We propose a novel stabilization mechanism based on a periodic modulation of both gain and loss along the propagation direction that allows bounded light propagation in the multicore waveguiding structures.
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
A multicore fibre (MCF) sensor to measure the radial deformation of a compliant cylinder under compression is presented. The sensor is connectorised and need not be permanently bonded to the test object. A differential measurement technique using FBGs written into the MCF makes the sensor temperature insensitive. FBG measurement of axial strain of a cylinder under compression is also reported.
Resumo:
We report an accelerometer based upon a simple fibre cantilever constructed from a short length of multicore fibre(MCF) containing fibre Bragg gratings (FBGs). Two-axis measurement is demonstrated up to 3 kHz.
Resumo:
Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m-1 and 3.57 dB/m-1 to the ultra-low curvature values from 0 to 1 m-1. This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber. © 2014 Optical Society of America.
Resumo:
In the computer science community, there is considerable debate about the appropriate sequence for introducing object-oriented concepts to novice programmers. Research into novice programming has struggled to identify the critical aspects that would provide a consistently successful approach to teaching introductory object-oriented programming. Starting from the premise that the conceptions of a task determine the type of output from the task, assisting novice programmers to become aware of what the required output should be, may lay a foundation for improving learning. This study adopted a phenomenographic approach. Thirty one practitioners were interviewed about the ways in which they experience object-oriented programming and categories of description and critical aspects were identified. These critical aspects were then used to examine the spaces of learning provided in twenty introductory textbooks. The study uncovered critical aspects that related to the way that practitioners expressed their understanding of an object-oriented program and the influences on their approach to designing programs. The study of the textbooks revealed a large variability in the cover of these critical aspects.
Resumo:
The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.
Resumo:
We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.