33 resultados para multi-objective genetic algorithms
Resumo:
The standard reference clinical score quantifying average Parkinson's disease (PD) symptom severity is the Unified Parkinson's Disease Rating Scale (UPDRS). At present, UPDRS is determined by the subjective clinical evaluation of the patient's ability to adequately cope with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively assessed to clinically useful accuracy using simple, self-administered speech tests, without requiring the patient's physical presence in the clinic. We apply a wide range of known speech signal processing algorithms to a large database (approx. 6000 recordings from 42 PD patients, recruited to a six-month, multi-centre trial) and propose a number of novel, nonlinear signal processing algorithms which reveal pathological characteristics in PD more accurately than existing approaches. Robust feature selection algorithms select the optimal subset of these algorithms, which is fed into non-parametric regression and classification algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 UPDRS points difference from the clinicians' estimates, p < 0.001). This study supports the viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based on self-administered speech tests. This technology could facilitate large-scale clinical trials into novel PD treatments.
Resumo:
This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.
Resumo:
Link quality-based rate adaptation has been widely used for IEEE 802.11 networks. However, network performance is affected by both link quality and random channel access. Selection of transmit modes for optimal link throughput can cause medium access control (MAC) throughput loss. In this paper, we investigate this issue and propose a generalised cross-layer rate adaptation algorithm. It considers jointly link quality and channel access to optimise network throughput. The objective is to examine the potential benefits by cross-layer design. An efficient analytic model is proposed to evaluate rate adaptation algorithms under dynamic channel and multi-user access environments. The proposed algorithm is compared to link throughput optimisation-based algorithm. It is found rate adaptation by optimising link layer throughput can result in large performance loss, which cannot be compensated by the means of optimising MAC access mechanism alone. Results show cross-layer design can achieve consistent and considerable performance gains of up to 20%. It deserves to be exploited in practical design for IEEE 802.11 networks.