41 resultados para mixed integer linear programming
Resumo:
This research is concerned with the application of operational research techniques in the development of a long- term waste management policy by an English waste disposal authority. The main aspects which have been considered are the estimation of future waste production and the assessment of the effects of proposed systems. Only household and commercial wastes have been dealt with in detail, though suggestions are made for the extension of the effect assessment to cover industrial and other wastes. Similarly, the only effects considered in detail have been costs, but possible extensions are discussed. An important feature of the study is that it was conducted in close collaboration with a waste disposal authority, and so pays more attention to the actual needs of the authority than is usual in such research. A critical examination of previous waste forecasting work leads to the use of simple trend extrapolation methods, with some consideration of seasonal effects. The possibility of relating waste production to other social and economic indicators is discussed. It is concluded that, at present, large uncertainties in predictions are inevitable; waste management systems must therefore be designed to cope with this uncertainty. Linear programming is used to assess the overall costs of proposals. Two alternative linear programming formulations of this problem are used and discussed. The first is a straightforward approach, which has been .implemented as an interactive computer program. The second is more sophisticated and represents the behaviour of incineration plants more realistically. Careful attention is paid to the choice of appropriate data and the interpretation of the results. Recommendations are made on methods for immediate use, on the choice of data to be collected for future plans, and on the most useful lines for further research and development.
Resumo:
Analysis of the use of ICT in the aerospace industry has prompted the detailed investigation of an inventory-planning problem. There is a special class of inventory, consisting of expensive repairable spares for use in support of aircraft operations. These items, called rotables, are not well served by conventional theory and systems for inventory management. The context of the problem, the aircraft maintenance industry sector, is described in order to convey some of its special characteristics in the context of operations management. A literature review is carried out to seek existing theory that can be applied to rotable inventory and to identify a potential gap into which newly developed theory could contribute. Current techniques for rotable planning are identified in industry and the literature: these methods are modelled and tested using inventory and operational data obtained in the field. In the expectation that current practice leaves much scope for improvement, several new models are proposed. These are developed and tested on the field data for comparison with current practice. The new models are revised following testing to give improved versions. The best model developed and tested here comprises a linear programming optimisation, which finds an optimal level of inventory for multiple test cases, reflecting changing operating conditions. The new model offers an inventory plan that is up to 40% less expensive than that determined by current practice, while maintaining required performance.
Resumo:
Financial institutes are an integral part of any modern economy. In the 1970s and 1980s, Gulf Cooperation Council (GCC) countries made significant progress in financial deepening and in building a modern financial infrastructure. This study aims to evaluate the performance (efficiency) of financial institutes (banking sector) in GCC countries. Since, the selected variables include negative data for some banks and positive for others, and the available evaluation methods are not helpful in this case, so we developed a Semi Oriented Radial Model to perform this evaluation. Furthermore, since the SORM evaluation result provides a limited information for any decision maker (bankers, investors, etc...), we proposed a second stage analysis using classification and regression (C&R) method to get further results combining SORM results with other environmental data (Financial, economical and political) to set rules for the efficient banks, hence, the results will be useful for bankers in order to improve their bank performance and to the investors, maximize their returns. Mainly there are two approaches to evaluate the performance of Decision Making Units (DMUs), under each of them there are different methods with different assumptions. Parametric approach is based on the econometric regression theory and nonparametric approach is based on a mathematical linear programming theory. Under the nonparametric approaches, there are two methods: Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). While there are three methods under the parametric approach: Stochastic Frontier Analysis (SFA); Thick Frontier Analysis (TFA) and Distribution-Free Analysis (DFA). The result shows that DEA and SFA are the most applicable methods in banking sector, but DEA is seem to be most popular between researchers. However DEA as SFA still facing many challenges, one of these challenges is how to deal with negative data, since it requires the assumption that all the input and output values are non-negative, while in many applications negative outputs could appear e.g. losses in contrast with profit. Although there are few developed Models under DEA to deal with negative data but we believe that each of them has it is own limitations, therefore we developed a Semi-Oriented-Radial-Model (SORM) that could handle the negativity issue in DEA. The application result using SORM shows that the overall performance of GCC banking is relatively high (85.6%). Although, the efficiency score is fluctuated over the study period (1998-2007) due to the second Gulf War and to the international financial crisis, but still higher than the efficiency score of their counterpart in other countries. Banks operating in Saudi Arabia seem to be the highest efficient banks followed by UAE, Omani and Bahraini banks, while banks operating in Qatar and Kuwait seem to be the lowest efficient banks; this is because these two countries are the most affected country in the second Gulf War. Also, the result shows that there is no statistical relationship between the operating style (Islamic or Conventional) and bank efficiency. Even though there is no statistical differences due to the operational style, but Islamic bank seem to be more efficient than the Conventional bank, since on average their efficiency score is 86.33% compare to 85.38% for Conventional banks. Furthermore, the Islamic banks seem to be more affected by the political crisis (second Gulf War), whereas Conventional banks seem to be more affected by the financial crisis.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
This paper examines the problems in the definition of the General Non-Parametric Corporate Performance (GNCP) and introduces a multiplicative linear programming as an alternative model for corporate performance. We verified and tested a statistically significant difference between the two models based on the application of 27 UK industries using six performance ratios. Our new model is found to be a more robust performance model than the previous standard Data Envelopment Analysis (DEA) model.
Resumo:
The non-linear programming algorithms for the minimum weight design of structural frames are presented in this thesis. The first, which is applied to rigidly jointed and pin jointed plane frames subject to deflexion constraints, consists of a search in a feasible design space. Successive trial designs are developed so that the feasibility and the optimality of the designs are improved simultaneously. It is found that this method is restricted lo the design of structures with few unknown variables. The second non-linear programming algorithm is presented .in a general form. This consists of two types of search, one improving feasibility and the other optimality. The method speeds up the 'feasible direction' approach by obtaining a constant weight direction vector that is influenced by dominating constraints. For pin jointed plane and space frames this method is used to obtain a 'minimum weight' design which satisfies restrictions on stresses and deflexions. The matrix force method enables the design requirements to be expressed in a general form and the design problem is automatically formulated within the computer. Examples are given to explain the method and the design criteria are extended to include member buckling. Fundamental theorems are proposed and proved to confirm that structures are inter-related. These theorems are applicable to linear elastic structures and facilitate the prediction of the behaviour of one structure from the results of analysing another, more general, or related structure. It becomes possible to evaluate the significance of each member in the behaviour of a structure and the problem of minimum weight design is extended to include shape. A method is proposed to design structures of optimum shape with stress and deflexion limitations. Finally a detailed investigation is carried out into the design of structures to study the factors that influence their shape.
Resumo:
As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.
Resumo:
The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to preserve users’ privacy. In order to deal with malicious attacks, k -anonymity solutions have been proposed to partially obfuscate topological information that can be used to infer nodes’ identity. In this paper, we study the problem of ensuring k anonymity in time-varying graphs, i.e., graphs with a structure that changes over time, and multi-layer graphs, i.e., graphs with multiple types of links. More specifically, we examine the case in which the attacker has access to the degree of the nodes. The goal is to generate a new graph where, given the degree of a node in each (temporal) layer of the graph, such a node remains indistinguishable from other k-1 nodes in the graph. In order to achieve this, we find the optimal partitioning of the graph nodes such that the cost of anonymizing the degree information within each group is minimum. We show that this reduces to a special case of a Generalized Assignment Problem, and we propose a simple yet effective algorithm to solve it. Finally, we introduce an iterated linear programming approach to enforce the realizability of the anonymized degree sequences. The efficacy of the method is assessed through an extensive set of experiments on synthetic and real-world graphs.
Resumo:
We propose a cost-effective hot event detection system over Sina Weibo platform, currently the dominant microblogging service provider in China. The problem of finding a proper subset of microbloggers under resource constraints is formulated as a mixed-integer problem for which heuristic algorithms are developed to compute approximate solution. Preliminary results show that by tracking about 500 out of 1.6 million candidate microbloggers and processing 15,000 microposts daily, 62% of the hot events can be detected five hours on average earlier than they are published by Weibo.
Resumo:
Energy crops production is considered as environmentally benign and socially acceptable, offering ecological benefits over fossil fuels through their contribution to the reduction of greenhouse gases and acidifying emissions. Energy crops are subjected to persistent policy support by the EU, despite their limited or even marginally negative impact on the greenhouse effect. The present study endeavors to optimize the agricultural income generated by energy crops in a remote and disadvantageous region, with the assistance of linear programming. The optimization concerns the income created from soybean, sunflower (proxy for energy crop), and corn. Different policy scenarios imposed restrictions on the value of the subsidies as a proxy for EU policy tools, the value of inputs (costs of capital and labor) and different irrigation conditions. The results indicate that the area and the imports per energy crop remain unchanged, independently of the policy scenario enacted. Furthermore, corn cultivation contributes the most to iFncome maximization, whereas the implemented CAP policy plays an incremental role in uptaking an energy crop. A key implication is that alternative forms of motivation should be provided to the farmers beyond the financial ones in order the extensive use of energy crops to be achieved.