38 resultados para high strength


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 x 42 x 42 A, combined with either a screened Coulomb, repulsive structure factor, S-SC(q), or an attractive square-well structure factor, S-SW(q). At pH = 7, BSA is negatively charged. At low ionic strength, I <0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I >= 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and short-range, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly dispersed H3PW12O40/SiO2 catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO2 surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH3 adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial ΔHads = −164 kJ mol−1. Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H3PW12O40 pseudo-liquid phase available within supported multilayers. © the Owner Societies 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.