34 resultados para granular computing
Resumo:
Adaptability for distributed object-oriented enterprise frameworks in multimedia technology is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing systems. In this paper, we propose a Metalevel Component-Based Framework which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our approach of combining a meta-architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed multimedia applications. The proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address issues in the domain of distributed computing and they can be woven together to shape the framework in future. © 2011 Springer Science+Business Media B.V.
Resumo:
An iterative method for computing the channel capacity of both discrete and continuous input, continuous output channels is proposed. The efficiency of new method is demonstrated in comparison with the classical Blahut - Arimoto algorithm for several known channels. Moreover, we also present a hybrid method combining advantages of both the Blahut - Arimoto algorithm and our iterative approach. The new method is especially efficient for the channels with a priory unknown discrete input alphabet.
Resumo:
In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.
Resumo:
This paper describes the use of Bluetooth and Java-Based technologies in developing a multi-player mobile game in ubiquitous computing, which strongly depends on automatic contextual reconfiguration and context-triggered actions. Our investigation focuses on an extended form of ubiquitous computing which game software developers utilize to develop games for players. We have developed an experimental ubiquitous computing application that provides context-aware services to game server and game players in a mobile distributed computing system. Obviously, contextual services provide useful information in a context-aware system. However, designing a context-aware game is still a daunting task and much theoretical and practical research remains to be done to reach the ubiquitous computing era. In this paper, we present the overall architecture and discuss, in detail, the implementation steps taken to create a Bluetooth and Java based context-aware game. We develop a multi-player game server and prepare the client and server codes in ubiquitous computing, providing adaptive routines to handle connection information requests, logging and context formatting and delivery for automatic contextual reconfiguration and context-triggered actions. © 2010 Binary Information Press.