40 resultados para fibers and carotenoids


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the effective side detection of radiation-mode out-coupling from blazed fiber Bragg gratings (BFBGs) fabricated in single-mode fiber (SMF) and multimode fiber (MMF). The far-field radiation power distribution from BFBGs have been measured achieving a high spatial-spectral resolution (0.17 mm/nm). We have also investigated comparatively the transmission-loss characteristics of BFBGs in both fiber types, fabricated using phase-mask and holographic inscription techniques. Our results reveal clearly that the radiation out-coupling from BFBGs is significantly stronger and spectrally more confined in MMF than in SMF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. © 2005 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate light pulse combining and pulse compression using a continuous-discrete nonlinear system implemented in a multi-core fiber (MCF). It is shown that the pulses initially injected into all of the cores of a ring MCF are combined by nonlinearity into a small number of cores with simultaneous pulse compression. We demonstrate the combining of 77% of the energy into one core with pulse compression over 14× in a 20-core MCF. We also demonstrate that a suggested scheme is insensitive to the phase perturbations. Nonlinear spatio-temporal pulse manipulation in multi-core fibers can be exploited for various applications, including pulse compression, switching, and combining.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigate the design of few-mode fibers (FMFs) guiding 4 to 12 non-degenerate linearly polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul transmission. The refractive index profile considered is composed by a graded-core with a cladding trench (GCCT). The optimization of the profile parameters aims the lowest possible DMD and macro-bend losses (MBL) lower than the ITU-T standard recommendation. The optimization results show that the optimum DMD and the MBL scale with the number of modes. Additionally, it is shown that the refractive-index relative difference at the core center is one of the most preponderant parameters, allowing to reduce the DMD at the expense of increasing MBL. Finally, the optimum DMD obtained for 12 LP modes is lower than 3 ps/km. © 2014 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we investigate the design of few-mode fibers (FMFs) guiding 2 to 12 linearly polarized (LP) modes with low differential mode delay (DMD) over the C-band, suitable for long-haul transmission. Two different types of refractive index profile have been considered: a graded-core with a cladding trench (GCCT) profile and a multi-step-index (MSI) profile. The profiles parameters are optimized in order to achieve: the lowest possible DMD and macro-bend losses (MBL) lower than the ITU-T standard recommendation. The optimization results show that the MSI profiles present lower DMD than the minimum achieved with a GCCT profile. Moreover, it is shown that the optimum DMD and the MBL scale with the number of modes for both profiles. The optimum DMD obtained for 12 LP modes is lower than 3 ps/km using a GCCT profile and lower than 2.5 ps/km using a MSI profile. The optimization results reveal that the most preponderant parameter of the GCCT profile is the refractive index relative difference at the core center, Δnco. Reducing Δn co, the DMD is reduced at the expense of increasing the MBL. Regarding the MSI profiles, it is shown that 64 steps are required to obtain a DMD improvement considering 12 LP modes. Finally, the impact of the fabrication margins on the optimum DMD is analyzed. The probability of having a manufactured FMF with 12 LP modes and DMD lower than 12 ps/km is approximately 68% using a GCCT profile and 16% using a MSI profile. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This letter proposes the use of a refractive index profile with a graded core and a cladding trench for the design of few-mode fibers, aiming an arbitrary differential mode delay (DMD) flattened over the C+ L band. By optimizing the core grading exponent and the dimensioning of the trench, a deviation lower than 0.01 ps/km from a target DMD is observed over the investigated wavelength range. Additionally, it is found that the dimensioning of the trench is almost independent of the target DMD, thereby enabling the use of a simple design rule that guarantees a maximum DMD deviation of 1.8 ps/km for a DMD target between-200 and 200 ps/km. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spectral properties of long-period gratings (LPGs) fabricated in photonic crystal fibers using femtosecond laser pulses by the point-by-point technique, without oil-immersion of the fiber, are investigated in detail. Postfabrication spectral monitoring at room temperature showed significant long-term instability of the gratings and stable spectra only after 600 h. The stabilized spectral properties of the gratings improved with increasing annealing temperature. The observed changes in resonant wavelength, optical strength, and grating birefringence were correlated to the laser inscription energy and were further used to study the mechanism of femtosecond inscription. Furthermore, the femtosecond-laser inscribed LPGs were compared to electric-arc fabricated LPGs. Comparison of experimental results with theoretical models of LPGs and laser propagation during inscription indicate that the major processes responsible for the index change are permanent compaction and thermally induced strain, the latter can be significantly changed through annealing. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have systematically measured the differential stress-optic coefficient, ΔC, and Young's modulus, E, in a number of PMMA fibers drawn with different stress, ranging from 2 up to 27 MPa. Effect of temperature annealing on those parameters was also investigated. ΔC was determined in transverse illumination by measuring the dependence of birefringence on additional axial stress applied to the fiber. Our results show that ΔC in PMMA fibers has a negative sign and ranges from -4.5 to -1.5×10-12 Pa -1 depending on the drawing stress. Increase of the drawing stress results in greater initial fiber birefringence and lower ΔC. The dependence of ΔC and initial birefringence upon drawing stress is nonlinear and gradually saturates for higher drawing stress. Moreover, we find that ΔC is linearly proportional to initial fiber birefringence and that annealing the fiber has no impact on the slope of this dependence. On the other hand, no clear dependence was observed between the fiber drawing stress and the Young's modulus of the fibers as measured using microscopic digital image correlation with the fibers tensioned using an Instron tension tester. © 2010 SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate numerically light-pulse combining and pulse compression using wave-collapse (self-focusing) energy-localization dynamics in a continuous-discrete nonlinear system, as implemented in a multicore fiber (MCF) using one-dimensional (1D) and 2D core distribution designs. Large-scale numerical simulations were performed to determine the conditions of the most efficient coherent combining and compression of pulses injected into the considered MCFs. We demonstrate the possibility of combining in a single core 90% of the total energy of pulses initially injected into all cores of a 7-core MCF with a hexagonal lattice. A pulse compression factor of about 720 can be obtained with a 19-core ring MCF.