44 resultados para electro-optical ceramics
Resumo:
Summary form only given. In this paper an important new example of a system with strong and nontrivial patterning effects is presented. There has been much interest lately in the implementation of the differential phase shift-keying (PSK) modulation format for long-haul and ultra long-haul fibre communications and, in particular, the differential binary PSK (DBPSK) modulation format, where data is encoded into the optical phase. The results of a direct computation of the error statistics for an SMF/DCF RZ-DBPSK 5-channel WDM RZ-DBPSK link with hybrid Raman/EDFA amplification at 40 Gbit/s per channel, with a channel separation of 100 GHz are presented. The statistics of bit triplets and quantify strong pattern-dependent ISI are obtained.
Resumo:
In this paper, we demonstrate the possibility of reaching a quasi-stable nonlinear transmission regime with carrier pulses of 12.5 ps width in multi-channel 40 Gbit/s systems. The quasi-stable pulses that are presented in this work for the first time are not dispersion-managed solitons, and are indeed supported by a large normal span average dispersion and misbalanced optical amplification, and representing a new type of nonlinear carrier.
Resumo:
Optical differentiators constitute a basic device for analog all-optical signal processing [1]. Fiber grating approaches, both fiber Bragg grating (FBG) and long period grating (LPG), constitute an attractive solution because of their low cost, low insertion losses, and full compatibility with fiber optic systems. A first order differentiator LPG approach was proposed and demonstrated in [2], but FBGs may be preferred in applications with a bandwidth up to few nm because of the extreme sensitivity of LPGs to environmental fluctuations [3]. Several FBG approaches have been proposed in [3-6], requiring one or more additional optical elements to create a first-order differentiator. A very simple, single optical element FBG approach was proposed in [7] for first order differentiation, applying the well-known logarithmic Hilbert transform relation of the amplitude and phase of an FBG in transmission [8]. Using this relationship in the design process, it was theoretically and numerically demonstrated that a single FBG in transmission can be designed to simultaneously approach the amplitude and phase of a first-order differentiator spectral response, without need of any additional elements. © 2013 IEEE.
Resumo:
We present a design of a fast all-optical core-node processor that performs packet-forwarding in optical networks without header-modification. The design is based on bit-serial architecture using TOADs as logic-gates that perform modulo-arithmetic to forward packets.
Resumo:
This study discusses the fabrication and implementation of chirped fiber Bragg grating (CFBG) as optical wear sensors. Such a sensor has potential applications in monitoring grinding and milling machines through a safety device to check the wear on a car brake. The CFBG wear sensor has advantages over existing wear sensing techniques as it does not require electrical current to be passed through the sensor itself. This makes it eligible for application in combustible environments such as in the oil and gas industry.
Resumo:
A novel dual complementary output optical fiber transversal filter is realized for DWDM applications. Stable, simultaneous complementary filter responses with flattened passbands and large sidelobe suppressions are achieved with a single-line cascaded Hi-Bi fiber structure.
Resumo:
A simple and cost-effective technique for generating a flat, square-shaped multi-wavelength optical comb with 42.6 GHz line spacing and over 0.5 THz of total bandwidth is presented. A detailed theoretical analysis is presented, showing that using two concatenated modulators driven with voltages of 3.5 Vp are necessary to generate 11 comb lines with a flatness below 2dB. This performance is experimentally demonstrated using two cascaded Versawave 40 Gbit/s low drive voltage electro-optic polarisation modulators, where an 11 channel optical comb with a flatness of 1.9 dB and a side-mode-suppression ratio (SMSR) of 12.6 dB was obtained.
Resumo:
In this paper we have done back to back comparison of quantitive phase and refractive index from a microscopic image of waveguide previously obtained by Allsop et al. Paper also shows microscopic image of the first 3 waveguides from the sample. Tomlins et al. have demonstrated use of femtosecond fabricated artefacts as OCT calibration samples. Here we present the use of femtosecond waveguides, inscribed with optimized parameters, to test and calibrate the sensitivity of the OCT systems.
Resumo:
We numerically show the feasibility of Nyquist optical pulse generation in a mode-locked fibre laser with an in-cavity flat-top spectral filter. The proposed scheme offers the possibility to generate high-quality sinc-shaped pulses with tunable bandwidth.
Fibre optical parametric amplifier incorporating a Raman-pump for reduced four-wave mixing crosstalk
Resumo:
Transient fully reconfigurable photonic circuits can be introduced at the optical fiber surface with subangstrom precision. A building block of these circuits - a 0.7Å-precise nano-bottle resonator - is experimentally created by local heating, translated, and annihilated.
Resumo:
Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are powerefficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and costefficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.