128 resultados para data envelopment analysis
Resumo:
Renewable energy forms have been widely used in the past decades highlighting a "green" shift in energy production. An actual reason behind this turn to renewable energy production is EU directives which set the Union's targets for energy production from renewable sources, greenhouse gas emissions and increase in energy efficiency. All member countries are obligated to apply harmonized legislation and practices and restructure their energy production networks in order to meet EU targets. Towards the fulfillment of 20-20-20 EU targets, in Greece a specific strategy which promotes the construction of large scale Renewable Energy Source plants is promoted. In this paper, we present an optimal design of the Greek renewable energy production network applying a 0-1 Weighted Goal Programming model, considering social, environmental and economic criteria. In the absence of a panel of experts Data Envelopment Analysis (DEA) approach is used in order to filter the best out of the possible network structures, seeking for the maximum technical efficiency. Super-Efficiency DEA model is also used in order to reduce the solutions and find the best out of all the possible. The results showed that in order to achieve maximum efficiency, the social and environmental criteria must be weighted more than the economic ones.
Resumo:
Fuzzy data envelopment analysis (DEA) models emerge as another class of DEA models to account for imprecise inputs and outputs for decision making units (DMUs). Although several approaches for solving fuzzy DEA models have been developed, there are some drawbacks, ranging from the inability to provide satisfactory discrimination power to simplistic numerical examples that handles only triangular fuzzy numbers or symmetrical fuzzy numbers. To address these drawbacks, this paper proposes using the concept of expected value in generalized DEA (GDEA) model. This allows the unification of three models - fuzzy expected CCR, fuzzy expected BCC, and fuzzy expected FDH models - and the ability of these models to handle both symmetrical and asymmetrical fuzzy numbers. We also explored the role of fuzzy GDEA model as a ranking method and compared it to existing super-efficiency evaluation models. Our proposed model is always feasible, while infeasibility problems remain in certain cases under existing super-efficiency models. In order to illustrate the performance of the proposed method, it is first tested using two established numerical examples and compared with the results obtained from alternative methods. A third example on energy dependency among 23 European Union (EU) member countries is further used to validate and describe the efficacy of our approach under asymmetric fuzzy numbers.
Resumo:
Microfinance has been developed as alternative solution for global poverty alleviation effort in the last 30 years. Microfinance institution (MFI) has unique characteristic wherein they face double bottom line objectives of outreach to the poor and financial sustainability. This study proposes a two-stage analysis to measure Islamic Microfinance institutions (IMFIs) performance by comparing them to conventional MFIs. First, we develop a Data Envelopment Analysis (DEA) framework to measure MFIs' efficiency in its double bottom line objectives, i.e. in terms of social and financial efficiency. In the second stage non-parametric tests are used to compare the performance and identify factors that contribute to the efficiency of IMFIs and MFIs.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
Organizations can use the valuable tool of data envelopment analysis (DEA) to make informed decisions on developing successful strategies, setting specific goals, and identifying underperforming activities to improve the output or outcome of performance measurement. The Handbook of Research on Strategic Performance Management and Measurement Using Data Envelopment Analysis highlights the advantages of using DEA as a tool to improve business performance and identify sources of inefficiency in public and private organizations. These recently developed theories and applications of DEA will be useful for policymakers, managers, and practitioners in the areas of sustainable development of our society including environment, agriculture, finance, and higher education sectors. All rights reserved.
Resumo:
Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.
Resumo:
The educational process is characterised by multiple outcomes such as the achievement of academic results of various standards and non-academic achievements. This paper shows how data envelopment analysis (DEA) can be used to guide secondary schools to improved performance through role-model identification and target setting in a way which recognises the multi-outcome nature of the education process and reflects the relative desirability of improving individual outcomes. The approach presented in the paper draws from a DEA-based assessment of the schools of a local education authority carried out by the authors. Data from that assessment are used to illustrate the approach presented in the paper. (Key words: Data envelopment analysis, education, target setting.)
Resumo:
Non-parametric methods for efficiency evaluation were designed to analyse industries comprising multi-input multi-output producers and lacking data on market prices. Education is a typical example. In this chapter, we review applications of DEA in secondary and tertiary education, focusing on the opportunities that this offers for benchmarking at institutional level. At secondary level, we investigate also the disaggregation of efficiency measures into pupil-level and school-level effects. For higher education, while many analyses concern overall institutional efficiency, we examine also studies that take a more disaggregated approach, centred either around the performance of specific functional areas or that of individual employees.
Resumo:
Queuing is a key efficiency criterion in any service industry, including Healthcare. Almost all queue management studies are dedicated to improving an existing Appointment System. In developing countries such as Pakistan, there are no Appointment Systems for outpatients, resulting in excessive wait times. Additionally, excessive overloading, limited resources and cumbersome procedures lead to over-whelming queues. Despite numerous Healthcare applications, Data Envelopment Analysis (DEA) has not been applied for queue assessment. The current study aims to extend DEA modelling and demonstrate its usefulness by evaluating the queue system of a busy public hospital in a developing country, Pakistan, where all outpatients are walk-in; along with construction of a dynamic framework dedicated towards the implementation of the model. The inadequate allocation of doctors/personnel was observed as the most critical issue for long queues. Hence, the Queuing-DEA model has been developed such that it determines the ‘required’ number of doctors/personnel. The results indicated that given extensive wait times or length of queue, or both, led to high target values for doctors/personnel. Hence, this crucial information allows the administrators to ensure optimal staff utilization and controlling the queue pre-emptively, minimizing wait times. The dynamic framework constructed, specifically targets practical implementation of the Queuing-DEA model in resource-poor public hospitals of developing countries such as Pakistan; to continuously monitor rapidly changing queue situation and display latest required personnel. Consequently, the wait times of subsequent patients can be minimized, along with dynamic staff scheduling in the absence of appointments. This dynamic framework has been designed in Excel, requiring minimal training and work for users and automatic update features, with complex technical aspects running in the background. The proposed model and the dynamic framework has the potential to be applied in similar public hospitals, even in other developing countries, where appointment systems for outpatients are non-existent.
Resumo:
To compare the accuracy of different forecasting approaches an error measure is required. Many error measures have been proposed in the literature, however in practice there are some situations where different measures yield different decisions on forecasting approach selection and there is no agreement on which approach should be used. Generally forecasting measures represent ratios or percentages providing an overall image of how well fitted the forecasting technique is to the observations. This paper proposes a multiplicative Data Envelopment Analysis (DEA) model in order to rank several forecasting techniques. We demonstrate the proposed model by applying it to the set of yearly time series of the M3 competition. The usefulness of the proposed approach has been tested using the M3-competition where five error measures have been applied in and aggregated to a single DEA score.
Resumo:
Zambia and many other countries in Sub-Saharan Africa face a key challenge of sustaining high levels of coverage of AIDS treatment under prospects of dwindling global resources for HIV/AIDS treatment. Policy debate in HIV/AIDS is increasingly paying more focus to efficiency in the use of available resources. In this chapter, we apply Data Envelopment Analysis (DEA) to estimate short term technical efficiency of 34 HIV/AIDS treatment facilities in Zambia. The data consists of input variables such as human resources, medical equipment, building space, drugs, medical supplies, and other materials used in providing HIV/AIDS treatment. Two main outputs namely, numbers of ART-years (Anti-Retroviral Therapy-years) and pre-ART-years are included in the model. Results show the mean technical efficiency score to be 83%, with great variability in efficiency scores across the facilities. Scale inefficiency is also shown to be significant. About half of the facilities were on the efficiency frontier. We also construct bootstrap confidence intervals around the efficiency scores.
Resumo:
Data envelopment analysis (DEA) is defined based on observed units and by finding the distance of each unit to the border of estimated production possibility set (PPS). The convexity is one of the underlying assumptions of the PPS. This paper shows some difficulties of using standard DEA models in the presence of input-ratios and/or output-ratios. The paper defines a new convexity assumption when data includes a ratio variable. Then it proposes a series of modified DEA models which are capable to rectify this problem.
Resumo:
Since the original Data Envelopment Analysis (DEA) study by Charnes et al. [Measuring the efficiency of decision-making units. European Journal of Operational Research 1978;2(6):429–44], there has been rapid and continuous growth in the field. As a result, a considerable amount of published research has appeared, with a significant portion focused on DEA applications of efficiency and productivity in both public and private sector activities. While several bibliographic collections have been reported, a comprehensive listing and analysis of DEA research covering its first 30 years of history is not available. This paper thus presents an extensive, if not nearly complete, listing of DEA research covering theoretical developments as well as “real-world” applications from inception to the year 2007. A listing of the most utilized/relevant journals, a keyword analysis, and selected statistics are presented.
Resumo:
The advent of Internet banking and phone banking is changing the role of bank branches from a predominantly transaction-based one to a sales-oriented role. This paper reports on an assessment of the branches of a Portuguese bank in terms of their performance in their new roles in three different areas: Their efficiency in fostering the use of new transaction channels, their efficiency in increasing sales and their customer base, and their efficiency in generating profits. Service quality is also a major issue in service organisations like bank branches, and therefore we analyse the way this dimension of performance has been accounted for in the literature and take it into account in our empirical application. We have used data envelopment analysis (DEA) for the different performance assessments, but we depart from traditional DEA models in some cases. Performance comparisons on each dimension allowed us to identify benchmark bank branches and also problematic bank branches. In addition, we found positive links between operational and profit efficiency and also between transactional and operational efficiency. Service quality is positively related with operational and profit efficiency. © 2006 Elsevier B.V. All rights reserved.