33 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)
Resumo:
Structural analysis in handwritten mathematical expressions focuses on interpreting the recognized symbols using geometrical information such as relative sizes and positions of the symbols. Most existing approaches rely on hand-crafted grammar rules to identify semantic relationships among the recognized mathematical symbols. They could easily fail when writing errors occurred. Moreover, they assume the availability of the whole mathematical expression before being able to analyze the semantic information of the expression. To tackle these problems, we propose a progressive structural analysis (PSA) approach for dynamic recognition of handwritten mathematical expressions. The proposed PSA approach is able to provide analysis result immediately after each written input symbol. This has an advantage that users are able to detect any recognition errors immediately and correct only the mis-recognized symbols rather than the whole expression. Experiments conducted on 57 most commonly used mathematical expressions have shown that the PSA approach is able to achieve very good performance results.
Resumo:
A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.
Resumo:
Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide (KBr) press at different pressures and subjected to Heckel analysis. Swelling studies were performed using 200 mg compacts of the gum (freeze-dried or air-dried) compressed on a KBr press. The mechanical properties of the films of the gum prepared by casting 1 % dispersions of the gum were evaluated using Hounsfield tensiometer. The mechanical properties of grewia gum films were compared with films of pullulan and guar gum which were similarly prepared. The effect of temperature on the water uptake of the compacts was studied and the data subjected to Schott's analysis. Results: Drying conditions had no effect on the yield pressure of the gum compacts as both air-dried and freeze-dried fractions had a yield pressure of 322.6 MPa. The plots based on Schott's equation for the grewia gum samples showed that both samples (freeze-dried and air-dried) exhibited long swelling times. Grewia gum film had a tensile strength of 19.22±3.61 MPa which was similar to that of pullulan films (p > 0.05). It had an elastic modulus of 2.13±0.12 N/mm2 which was significantly lower (p < 0.05) than those of pullulan and guar gum with elastic moduli of 3.33±0.00 and 2.86±0.00 N/mm2, respectively. Conclusion: The type of drying method used does not have any effect on the degree of plasticity of grewia gum compacts. Grewia gum obtained by either drying method exhibited extended swelling duration. Matrix tablet formulations of the gum will likely swell slowly and promote sustained release of drug. © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City.