37 resultados para conditions of contact
Resumo:
Purpose: Dynamic contact angle (DCA) methods have advantages over other contact angle methodologies, not least that they can provide more than single contact angle values. Here we illustrate the use of DCA analysis to provide “fingerprint” characterisation of contact lens surfaces, and the way that different materials change in the early stages of wear. Method: The DCA method involves attaching to a microbalance weighted strips cut from a lens. The strips are then cyclically inserted into and removed from an aqueous solution. Conventionally, readings of force taken from linear portions of the resultant dipping curves are translated into advancing (CAa) and receding contact (CAr) angles. Additionally, analysis of the force versus immersion profile provides a “fingerprint” characterisation of the state of the lens surface. Results: CAa and CAr values from DCA traces provide a useful means of differentiating gross differences in hydrophilicity and molecular mobility of surfaces under particular immersion and emersion conditions, such as dipping rate and dwell times. Typical values for etafilcon A (CAa:63.1; CAr:37) and balafilcon B (CAa:118.4; CAr:36.4) illustrate this. Surface modifications induced in lens manufacture are observed to produce not only changes in these value, which may be small, but also changes in the DCA “fingerprint” (slope, undulations, length of plateau). Interestingly, similar changes are induced in the first few hours of lens wear with some lens-patient combinations. Conclusions: Although single parameter contact angles are useful for material characterisation, information of potential clinical interest can be obtained from more detailed analysis of DCA traces.
Resumo:
Approximately half of current contact lens wearers suffer from dryness and discomfort, particularly towards the end of the day. Contact lens practitioners have a number of dry eye tests available to help them to predict which of their patients may be at risk of contact lens drop out and advise them accordingly. This thesis set out to rationalize them to see if any are of more diagnostic significance than others. This doctorate has found: (1) The Keratograph, a device which permits an automated, examiner independent technique for measuring non invasive tear break up time (NITBUT) measured NITBUT consistently shorter than measurements recorded with the Tearscope. When measuring central corneal curvature the spherical equivalent power of the cornea was measured as being significantly flatter than with a validated automated keratometer. (2) Non-invasive and invasive tear break-up times significantly correlated to each other, but not the other tear metrics. Symptomology, assessed using the OSDI questionnaire, correlated more with those tests indicating possible damage to the ocular surface (including LWE, LIPCOF and conjunctival staining) than with tests of either tear volume or stability. Cluster analysis showed some statistically significant groups of patients with different sign and symptom profiles. The largest cluster demonstrated poor tear quality with both non-invasive and invasive tests, low tear volume and more symptoms. (3) Care should be taken in fitting patients new to contact lenses if they have a NITBUT less than 10s or an OSDI comfort rating greater than 4.2 as they are more likely to drop-out within the first 6 months. Cluster analysis was not found to be beneficial in predicting which patients will succeed with lenses and which will not. A combination of the OSDI questionnaire and a NITBUT measurement was most useful both in diagnosing dry eye and in predicting contact lens drop out.
Resumo:
We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.
Resumo:
As we settle into a new year, this second issue of Contact Lens and Anterior Eye allows us to reflect on how new research in this field impacts our understanding, but more importantly, how we use this evidence basis to enhance our day to day practice, to educate the next generation of students and to construct the research studies to deepen our knowledge still further. The end of 2014 saw the publication of the UK governments Research Exercise Framework (REF) which ranks Universities in terms of their outputs (which includes their paper, publications and research income), environment (infrastructure and staff support) and for the first time impact (defined as “any effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia” [8]). The REF is a process of expert review, carried out in 36 subject-based units of assessment, of which our field is typically submitted to the Allied Health, Dentistry, Nursing and Pharmacy panel. Universities that offer Optometry did very well with Cardiff, Manchester and Aston in the top 10% out of the 94 Universities that submitted to this panel (Grade point Average ranked order). While the format of the new exercise (probably in 2010) to allocate the more than £2 billion of UK government research funds is yet to be determined, it is already rumoured that impact will contribute an even larger proportion to the weighting. Hence it is even more important to reflect on the impact of our research. In this issue, Elisseef and colleagues [5] examine the intriguing potential of modifying a lens surface to allow it to bind to known wetting agents (in this case hyaluronic acid) to enhance water retention. Such a technique has the capacity to reduced friction between the lens surface and the eyelids/ocular surface, presumably leading to higher comfort and less reason for patients to discontinue with lens wear. Several papers in this issue report on the validity of new high precision, fast scanning imaging and quantification equipment, utilising techniques such as Scheimpflug, partial coherence interferometry, aberrometry and video allowing detailed assessment of anterior chamber biometry, corneal topography, corneal biomechanics, peripheral refraction, ocular aberrations and lens fit. The challenge is how to use this advanced instrumentation which is becoming increasingly available to create real impact. Many challenges in contact lenses and the anterior eye still prevail in 2015 such as: -While contact lens and refractive surgery complications are relatively rare, they are still too often devastating to the individual and their quality of life (such as the impact and prognosis of patients with Acanthmoeba Keratitis reported by Jhanji and colleagues in this issue [7]). How can we detect those patients who are going to be affected and what modifications do we need to make to contact lenses and patient management prevent this occurring? -Drop out from contact lenses still occurs at a rapid rate and symptoms of dry eye seem to be the leading cause driving this discontinuation of wear [1] and [2]. What design, coating, material and lubricant release mechanism will make a step change in end of day comfort in particular? -Presbyopia is a major challenge to hassle free quality vision and is one of the first signs of ageing noticed by many people. As an emmetrope approaching presbyopia, I have a vested interest in new medical devices that will give me high quality vision at all distances when my arms won’t stretch any further. Perhaps a new definition of presbyopia could be when you start to orientate your smartphone in the landscape direction to gain the small increase in print size needed to read! Effective accommodating intraocular lenses that truly mimic the pre-presbyopic crystalline lenses are still a way off [3] and hence simultaneous images achieved through contact lenses, intraocular lenses or refractive surgery still have a secure future. However, splitting light reaching the retina and requiring the brain to supress blurred images will always be a compromise on contrast sensitivity and is liable to cause dysphotopsia; so how will new designs account for differences in a patient's task demands and own optical aberrations to allow focused patient selection, optimising satisfaction? -Drug delivery from contact lenses offers much in terms of compliance and quality of life for patients with chronic ocular conditions such as glaucoma, dry eye and perhaps in the future, dry age-related macular degeneration; but scientific proof-of-concept publications (see EIShaer et al. [6]) have not yet led to commercial products. Part of this is presumably the regulatory complexity of combining a medical device (the contact lens) and a pharmaceutical agent. Will 2015 be the year when this innovation finally becomes a reality for patients, bringing them an enhanced quality of life through their eye care practitioners and allowing researchers to further validate the use of pharmaceutical contact lenses and propose enhancements as the technology matures? -Last, but no means least is the field of myopia control, the topic of the first day of the BCLA's Conference in Liverpool, June 6–9th 2015. The epidemic of myopia is a blight, particularly in Asia, with significant concerns over sight threatening pathology resulting from the elongated eye. This is a field where real impact is already being realised through new soft contact lens optics, orthokeratology and low dose pharmaceuticals [4], but we still need to be able to better predict which technique will work best for an individual and to develop new techniques to retard myopia progression in those who don’t respond to current treatments, without increasing their risk of complications or the treatment impacting their quality of life So what will your New Year's resolution be to make 2015 a year of real impact, whether by advancing science or applying the findings published in journals such as Contact Lens and Anterior Eye to make a real difference to your patients’ lives?
Resumo:
Lipids play a vital role in the body at many interfaces. Examples include the lubrication of articulating joints by synovial fluid, the coating of the lung by pulmonary surfactant and the functions of the tear film in the protection of the anterior eye. The role of the lipids is similar at each site - acting as boundary lubricants and reducing surface and interfacial tension. This review focuses on how and why contact lens wear can disrupt the normal function of lipids within the tear film and explains how the otherwise advantageous presence and function of tear lipids can become disadvantageous, causing problems for the wearer. Because the contact lens is some ten times thicker than the tear film, lipids deposited on the anterior surface become immobilised, reducing lipid turnover and thus leading to prolonged exposure to oxygen and light with consequent generation of degradation products. These degraded lipids reduce lens wettability and have additionally been linked to problems of contact lens discomfort and intolerance. Lipid problems are influenced by the thickness of the lens, the material, surface modification, mode of wear and ultimately the subject. The most influential of these variables is frequently the subject. © 2012.
Resumo:
Presbyopia is a consequence of ageing and is therefore increasing inprevalence due to an increase in the ageing population. Of the many methods available to manage presbyopia, the use of contact lenses is indeed a tried and tested reversible option for those wishing to be spectacle free. Contact lens options to correct presbyopia include multifocal contact lenses and monovision.Several options have been available for many years with available guides to help choose multifocal contact lenses. However there is no comprehensive way to help the practitioner selecting the best option for an individual. An examination of the simplest way of predicting the most suitable multifocal lens for a patient will only enhance and add to the current evidence available. The purpose of the study was to determine the current use of presbyopic correction modalities in an optometric practice population in the UK and to evaluate and compare the optical performance of four silicone hydrogel soft multifocal contact lenses and to compare multifocal performance with contact lens monovision. The presbyopic practice cohort principal forms of refractive correction were distance spectacles (with near and intermediate vision providedby a variety of other forms of correction), varifocal spectacles and unaided distance with reading spectacles, with few patients wearing contact lenses as their primary correction modality. The results of the multifocal contact lens randomised controlled trial showed that there were only minor differences in corneal physiology between the lens options. Visual acuity differences were observed for distance targets, but only for low contrast letters and under mesopic lighting conditions. At closer distances between 20cm and 67cm, the defocus curves demonstrated that there were significant differences in acuity between lens designs (p < 0.001) and there was an interaction between the lens design and the level of defocus (p < 0.001). None of the lenses showed a clear near addition, perhaps due to their more aspheric rather than zoned design. As expected, stereoacuity was reduced with monovision compared with the multifocal contact lens designs, although there were some differences between the multifocal lens designs (p < 0.05). Reading speed did not differ between lens designs (F = 1.082, p = 0.368), whereas there was a significant difference in critical print size (F = 7.543, p < 0.001). Glare was quantified with a novel halometer and halo size was found to significantly differ between lenses(F = 4.101, p = 0.004). The rating of iPhone image clarity was significantly different between presbyopic corrections (p = 0.002) as was the Near Acuity Visual Questionnaire (NAVQ) rating of near performance (F = 3.730, p = 0.007).The pupil size did not alter with contact lens design (F = 1.614, p = 0.175), but was larger in the dominant eye (F = 5.489, p = 0.025). Pupil decentration relative to the optical axis did not alter with contact lens design (F = 0.777, p =0.542), but was also greater in the dominant eye (F = 9.917, p = 0.003). It was interesting to note that there was no difference in spherical aberrations induced between the contact lens designs (p > 0.05), with eye dominance (p > 0.05) oroptical component (ocular, corneal or internal: p > 0.05). In terms of subjective patient lens preference, 10 patients preferred monovision,12 Biofinity multifocal lens, 7 Purevision 2 for Presbyopia, 4 AirOptix multifocal and 2 Oasys multifocal contact lenses. However, there were no differences in demographic factors relating to lifestyle or personality, or physiological characteristics such as pupil size or ocular aberrations as measured at baseline,which would allow a practitioner to identify which lens modality the patient would prefer. In terms of the performance of patients with their preferred lens, it emerged that Biofinity multifocal lens preferring patients had a better high contrast acuity under photopic conditions, maintained their reading speed at smaller print sizes and subjectively rated iPhone clarity as better with this lens compared with the other lens designs trialled. Patients who preferred monovision had a lower acuity across a range of distances and a larger area of glare than those patients preferring other lens designs that was unexplained by the clinical metrics measured. However, it seemed that a complex interaction of aberrations may drive lens preference. New clinical tests or more diverse lens designs which may allow practitioners to prescribe patients the presbyopic contact lens option that will work best for them first time remains a hope for the future.
Resumo:
We conducted an experimental intervention aimed at comparing the effectiveness of direct and imagined intergroup contact. Italian elementary school children took part in a three-week intervention with dependent variables assessed one week after the last intervention session. Results revealed that direct and imagined intergroup contact, compared to control conditions of direct and imagined intragroup contact, had an additive impact when it came to reducing negative stereotypes of immigrants and fostering future helping intentions toward this group. The theoretical and practical implications of the findings are discussed.